search
Log In

Web Page

Syllabus: Limits, Continuity, and Differentiability, Maxima and minima, Mean value theorem, Integration.

$$\small{\overset{{\large{\textbf{Mark Distribution in Previous GATE}}}}{\begin{array}{|c|c|c|c|c|c|c|c|}\hline
\textbf{Year}&\textbf{2019}&\textbf{2018}&\textbf{2017-1}&\textbf{2017-2}&\textbf{2016-1}&\textbf{2016-2}&\textbf{Minimum}&\textbf{Average}&\textbf{Maximum}
\\\hline\textbf{1 Mark Count}&1&1&0&1&1&1&0&0.8&1
\\\hline\textbf{2 Marks Count}&0&0&1&0&0&0&0&0.2&1
\\\hline\textbf{Total Marks}&1&1&2&1&1&1&\bf{1}&\bf{1.2}&\bf{2}\\\hline
\end{array}}}$$

Hot questions in Calculus

53 votes
7 answers
1
A function $f(x)$ is continuous in the interval $[0,2]$. It is known that $f(0) = f(2) = -1$ and $f(1) = 1$. Which one of the following statements must be true? There exists a $y$ in the interval $(0,1)$ such that $f(y) = f(y+1)$ For every $y$ ... maximum value of the function in the interval $(0,2)$ is $1$ There exists a $y$ in the interval $(0,1)$ such that $f(y)$ = $-f(2-y)$
asked Sep 28, 2014 in Calculus jothee 9.8k views
16 votes
6 answers
2
$\lim_{x \to \infty}\frac{x-\sin x}{x+\cos x}$ equals $1$ $-1$ $\infty$ $-\infty$
asked Sep 11, 2014 in Calculus Kathleen 4.4k views
44 votes
4 answers
3
Consider the function $f(x) = \sin(x)$ in the interval $x =\left[\frac{\pi}{4},\frac{7\pi}{4}\right]$. The number and location(s) of the local minima of this function are One, at $\dfrac{\pi}{2}$ One, at $\dfrac{3\pi}{2}$ Two, at $\dfrac{\pi}{2}$ and $\dfrac{3\pi}{2}$ Two, at $\dfrac{\pi}{4}$ and $\dfrac{3\pi}{2}$
asked Aug 5, 2014 in Calculus gatecse 6.8k views
0 votes
0 answers
4
The limit $\underset{n\rightarrow \infty }{\lim}\:n^{2}\int_{0}^{1}\:\frac{1}{\left ( 1+x^{2} \right )^{n}}\:dx$ is equal to $1$ $0$ $+\infty$ $1/2$
asked Aug 30, 2020 in Calculus soujanyareddy13 180 views
0 votes
0 answers
5
A solution for the differential equation $x’(t) + 2x(t) = \delta(t)$ with initial condition $x(\overline{0}) = 0$ $e^{-2t}u(t)$ $e^{2t}u(t)$ $e^{-t}u(t)$ $e^{t}u(t)$
asked Aug 28, 2020 in Calculus Lakshman Patel RJIT 68 views
0 votes
1 answer
6
The value of the integral $\displaystyle{}\int_{-1}^1 \dfrac{x^2}{1+x^2} \sin x \sin 3x \sin 5x dx$ is $0$ $\frac{1}{2}$ $ – \frac{1}{2}$ $1$
asked Sep 23, 2019 in Calculus Arjun 204 views
18 votes
4 answers
7
The function $y=|2 - 3x|$​ is continuous $∀ x ∈ R$ and differentiable $∀ x ∈ R$ is continuous $∀ x ∈ R$ and differentiable $∀ x ∈ R$ except at $x=\frac{3}{2}$ is continuous $∀ x ∈ R$ and differentiable $∀ x ∈ R$ except at $x=\frac{2}{3}$ is continuous $∀ x ∈ R$ except $x=3$ and differentiable $∀ x ∈ R$
asked Mar 20, 2016 in Calculus Anuraag Nayak 2.5k views
0 votes
1 answer
8
The map $f(x) = a_0 \cos \mid x \mid +a_1 \sin \mid x \mid +a_2 \mid x \mid ^3$ is differentiable at $x=0$ if and only if $a_1=0$ and $a_2=0$ $a_0=0$ and $a_1=0$ $a_1=0$ $a_0, a_1, a_2$ can take any real value
asked Sep 23, 2019 in Calculus Arjun 114 views
0 votes
1 answer
9
A ladder $13$ feet long rests against the side of a house. The bottom of the ladder slides away from the house at a rate of $0.5$ ft/s. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is $5$ feet from the house? $\dfrac{5}{24} \text{ ft/s} \\$ $\dfrac{5}{12} \text{ ft/s} \\$ $-\dfrac{5}{24} \text {ft/s} \\$ $-\dfrac{5}{12} \text{ ft/s}$
asked Apr 2, 2020 in Calculus Lakshman Patel RJIT 72 views
3 votes
1 answer
10
For real $\alpha$, the value of $\int_{\alpha}^{\alpha+1} [x]dx$, where $[x]$ denotes the largest integer less than or equal to $x$, is $\alpha$ $[\alpha]$ $1$ $\dfrac{[\alpha] + [\alpha +1]}{2}$
asked Sep 23, 2019 in Calculus Arjun 142 views
1 vote
2 answers
11
Let $f: \bigg( – \dfrac{\pi}{2}, \dfrac{\pi}{2} \bigg) \to \mathbb{R}$ be a continuous function, $f(x) \to +\infty$ as $x \to \dfrac{\pi^-}{2}$ and $f(x) \to – \infty$ as $x \to -\dfrac{\pi^+}{2}$. Which one of the following functions satisfies the above properties of $f(x)$? $\cos x$ $\tan x$ $\tan^{-1} x$ $\sin x$
asked Sep 23, 2019 in Calculus Arjun 137 views
1 vote
2 answers
12
The area enclosed by the curve $\mid\: x \mid + \mid y \mid =1$ is $1$ $2$ $\sqrt{2}$ $4$
asked Sep 23, 2019 in Calculus Arjun 110 views
0 votes
1 answer
13
Let $y=\lfloor x \rfloor$, where $\lfloor x \rfloor$ is greatest integer less than or equal to $x$. Then $y$ is continuous and many-one $y$ is not differentiable and many-one $y$ is not differentiable $y$ is differentiable and many-one
asked Sep 18, 2019 in Calculus gatecse 81 views
0 votes
2 answers
14
Suppose that a function $f$ defined on $\mathbb{R} ^2$ satisfies the following conditions: $\begin{array} &f(x+t,y) & = & f(x,y)+ty, \\ f(x,t+y) & = & f(x,y)+ tx \text{ and } \\ f(0,0) & = & K, \text{ a constant.} \end{array}$ Then for all $x,y \in \mathbb{R}, \:f(x,y)$ is equal to $K(x+y)$ $K-xy$ $K+xy$ none of the above
asked Sep 23, 2019 in Calculus Arjun 177 views
0 votes
1 answer
15
$\underset{x \to 0}{\lim} x \sin \left( \frac{1}{x} \right)$ equals $-1$ $0$ $1$ Does not exist
asked Sep 18, 2019 in Calculus gatecse 82 views
2 votes
2 answers
16
$\underset{x \to 2}{\lim} \dfrac{1}{1+e^{\frac{1}{x-2}}}$ is $0$ $1/2$ $1$ non-existent
asked Sep 23, 2019 in Calculus Arjun 163 views
0 votes
1 answer
17
$\underset{x \to 1}{\lim} \dfrac{x^{16}-1}{\mid x-1 \mid}$ equals $-1$ $0$ $1$ Does not exist
asked Sep 18, 2019 in Calculus gatecse 70 views
2 votes
2 answers
18
The value of $\underset{x \to 0}{\lim} \dfrac{\tan^{2}\:x-x\:\tan\:x}{\sin\:x}$ is $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $0$ None of these
asked Sep 18, 2019 in Calculus gatecse 132 views
1 vote
2 answers
19
Consider the following functions $f(x)=\begin{cases} 1, & \text{if } \mid x \mid \leq 1 \\ 0, & \text{if } \mid x \mid >1 \end{cases}.$ ... discontinuity at $\pm1$ $h_2$ is continuous everywhere and $h_1$ has discontinuity at $\pm2$ $h_1$ has discontinuity at $\pm 2$ and $h_2$ has discontinuity at $\pm1$.
asked May 11, 2019 in Calculus akash.dinkar12 379 views
0 votes
1 answer
20
The value of the definite integral $\int_0^{\pi} \mid \frac{1}{2} + \cos x \mid dx$ is $\frac{\pi}{6} + \sqrt{3}$ $\frac{\pi}{6} - \sqrt{3}$ $0$ $\frac{1}{2}$
asked Sep 23, 2019 in Calculus Arjun 123 views
...