Web Page

$$\small{\overset{{\large{\textbf{Mark Distribution in Previous GATE}}}}{\begin{array}{|c|c|c|c|c|c|c|c|}\hline \textbf{Year}&\textbf{2019}&\textbf{2018}&\textbf{2017-1}&\textbf{2017-2}&\textbf{2016-1}&\textbf{2016-2}&\textbf{Minimum}&\textbf{Average}&\textbf{Maximum} \\\hline\textbf{1 Mark Count}&1&1&0&1&1&1&0&0.8&1 \\\hline\textbf{2 Marks Count}&0&0&1&0&0&0&0&0.2&1 \\\hline\textbf{Total Marks}&1&1&2&1&1&1&\bf{1}&\bf{1.2}&\bf{2}\\\hline \end{array}}}$$

# Most viewed questions in Calculus

1
A function $f(x)$ is continuous in the interval $[0,2]$. It is known that $f(0) = f(2) = -1$ and $f(1) = 1$. Which one of the following statements must be true? There exists a $y$ in the interval $(0,1)$ such that $f(y) = f(y+1)$ For every $y$ ... maximum value of the function in the interval $(0,2)$ is $1$ There exists a $y$ in the interval $(0,1)$ such that $f(y)$ = $-f(2-y)$
2
Let $f(x)=x^{-\left(\frac{1}{3}\right)}$ and $A$ denote the area of region bounded by $f(x)$ and the X-axis, when $x$ varies from $-1$ to $1$. Which of the following statements is/are TRUE? $f$ is continuous in $[-1, 1]$ $f$ is not bounded in $[-1, 1]$ $A$ is nonzero and finite II only III only II and III only I, II and III
3
The value of $\int^{\pi/4} _0 x \cos(x^2) dx$ correct to three decimal places (assuming that $\pi = 3.14$) is ____
4
Consider the function $f(x) = \sin(x)$ in the interval $x =\left[\frac{\pi}{4},\frac{7\pi}{4}\right]$. The number and location(s) of the local minima of this function are One, at $\dfrac{\pi}{2}$ One, at $\dfrac{3\pi}{2}$ Two, at $\dfrac{\pi}{2}$ and $\dfrac{3\pi}{2}$ Two, at $\dfrac{\pi}{4}$ and $\dfrac{3\pi}{2}$
5
Let the function $f(\theta) = \begin{vmatrix} \sin\theta & \cos\theta & \tan\theta \\ \sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) & \tan(\frac{\pi}{6}) & \\ \sin(\frac{\pi}{3}) & \cos(\frac{\pi}{3}) & \tan(\frac{\pi}{3}) \end{vmatrix}$ ... $\theta \in (\frac{\pi}{6},\frac{\pi}{3})$ such that $f'(\theta)\neq 0$ I only II only Both I and II Neither I Nor II
6
The value of $\lim_{x \rightarrow \infty} (1+x^2)^{e^{-x}}$ is $0$ $\frac{1}{2}$ $1$ $\infty$
7
Let $f(x)$ be a polynomial and $g(x)=f'(x)$ be its derivative. If the degree of $(f(x)+f(-x))$ is $10$, then the degree of $(g(x) - g(-x))$ is __________.
8
If $\int \limits_0^{2 \pi} |x \: \sin x| dx=k\pi$, then the value of $k$ is equal to ______.
9
$\lim_{x \to \infty}\frac{x-\sin x}{x+\cos x}$ equals $1$ $-1$ $\infty$ $-\infty$
10
Given $i = \sqrt{-1}$, what will be the evaluation of the definite integral $\int \limits_0^{\pi/2} \dfrac{\cos x +i \sin x} {\cos x - i \sin x} dx$ ? $0$ $2$ $-i$ $i$
11
$\lim_{x\rightarrow \infty } x^{ \tfrac{1}{x}}$ is $\infty$ 0 1 Not defined
12
Which one of the following functions is continuous at $x = 3?$ $f(x) = \begin{cases} 2,&\text{if$x = 3$} \\ x-1& \text{if$x > 3$}\\ \frac{x+3}{3}&\text{if$x < 3$} \end{cases}$ $f(x) = \begin{cases} 4,&\text{if$x = 3$} \\ 8-x& \text{if$x \neq 3$} \end{cases}$ ... $} \\ x-4& \text{if$x > 3$} \end{cases}$ $f(x) = \begin{cases} \frac{1}{x^3-27}&\text{if$x \neq 3$} \end{cases}$
13
If $f(x) = R \: \sin ( \frac{\pi x}{2}) + S, f’\left(\frac{1}{2}\right) = \sqrt{2}$ and $\int_0^1 f(x) dx = \frac{2R}{\pi}$, then the constants $R$ and $S$ are $\frac{2}{\pi}$ and $\frac{16}{\pi}$ $\frac{2}{\pi}$ and 0 $\frac{4}{\pi}$ and 0 $\frac{4}{\pi}$ and $\frac{16}{\pi}$
14
If for non-zero $x, \: af(x) + bf(\frac{1}{x}) = \frac{1}{x} - 25$ where a $a \neq b \text{ then } \int_1^2 f(x)dx$ is $\frac{1}{a^2 - b^2} \begin{bmatrix} a(\ln 2 - 25) + \frac{47b}{2} \end{bmatrix}$ ... $\frac{1}{a^2 - b^2} \begin{bmatrix} a(\ln 2 - 25) - \frac{47b}{2} \end{bmatrix}$
15
A point on a curve is said to be an extremum if it is a local minimum or a local maximum. The number of distinct extrema for the curve $3x^4-16x^3+24x^2+37$ is $0$ $1$ $2$ $3$
16
Compute the value of: $\large \int_{\frac{1}{\pi}}^{\frac{2}{\pi}}\frac{\cos(1/x)}{x^{2}}dx$
17
What is the value of $\lim_{n \to \infty}\left(1 - \frac{1}{n}\right)^{2n}$ ? 0 $e^{-2}$ $e^{-1/2}$ 1
$\lim _{x\rightarrow 4}\frac{\sin(x-4)}{x-4}$=____.
If $f(x)$ is defined as follows, what is the minimum value of $f(x)$ for $x \in (0, 2]$ ? $f(x) = \begin{cases} \frac{25}{8x} \text{ when } x \leq \frac{3}{2} \\ x+ \frac{1}{x} \text { otherwise}\end{cases}$ $2$ $2 \frac{1}{12}$ $2\frac{1}{6}$ $2\frac{1}{2}$
$\lim_{x\rightarrow 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ is given by 0 -1 1 $\frac{1}{2}$