Web Page

$$\small{\overset{{\large{\textbf{Mark Distribution in Previous GATE}}}}{\begin{array}{|c|c|c|c|c|c|c|c|}\hline \textbf{Year}&\textbf{2019}&\textbf{2018}&\textbf{2017-1}&\textbf{2017-2}&\textbf{2016-1}&\textbf{2016-2}&\textbf{Minimum}&\textbf{Average}&\textbf{Maximum} \\\hline\textbf{1 Mark Count}&1&1&0&1&1&1&0&0.8&1 \\\hline\textbf{2 Marks Count}&0&0&1&0&0&0&0&0.2&1 \\\hline\textbf{Total Marks}&1&1&2&1&1&1&\bf{1}&\bf{1.2}&\bf{2}\\\hline \end{array}}}$$

# Recent questions in Calculus

1
Let $\{a_n\}, n \geq 1$, be a sequence of real numbers satisfying $\mid a_n \mid \leq 1$ for all $n$. Define $A_n = \frac{1}{n}(a_1+a_2+\cdots+a_n)$, for $n \geq 1$. Then $\underset{n \to \infty}{\lim} \sqrt{n}(A_{n+1}-A_n)$ is equal to $0$ $-1$ $1$ none of these
2
In the Taylor expansion of the function $f(x)=e^{x/2}$ about $x=3$, the coefficient of $(x-3)^5$ is $e^{3/2} \frac{1}{5!}$ $e^{3/2} \frac{1}{2^5 5!}$ $e^{-3/2} \frac{1}{2^5 5!}$ none of the above
3
Consider the function $f(x) = \begin{cases} \int_0^x \{5+ \mid 1-y \mid \} dy & \text{ if } x>2 \\ 5x+2 & \text{ if } x \leq 2 \end{cases}$ Then $f$ is not continuous at $x=2$ $f$ is continuous and differentiable everywhere $f$ is continuous everywhere but not differentiable at $x=1$ $f$ is continuous everywhere but not differentiable at $x=2$
4
The map $f(x) = a_0 \cos \mid x \mid +a_1 \sin \mid x \mid +a_2 \mid x \mid ^3$ is differentiable at $x=0$ if and only if $a_1=0$ and $a_2=0$ $a_0=0$ and $a_1=0$ $a_1=0$ $a_0, a_1, a_2$ can take any real value
5
$f(x)$ is a differentiable function on the real line such that $\underset{x \to \infty=}{\lim} f(x) =1$ and $\underset{x \to \infty=}{\lim} f’(x) =\alpha$. Then $\alpha$ must be $0$ $\alpha$ need not be $0$, but $\mid \alpha \mid <1$ $\alpha >1$ $\alpha < -1$
6
Let $f$ and $g$ be two differentiable functions such that $f’(x)\leq g’(x)$for all $x<1$ and $f’(x) \geq g’(x)$ for all $x>1$. Then if $f(1) \geq g(1)$, then $f(x) \geq g(x)$ for all $x$ if $f(1) \leq g(1)$, then $f(x) \leq g(x)$ for all $x$ $f(1) \leq g(1)$ $f(1) \geq g(1)$
7
Given that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, the value of $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+xy+y^2)} dxdy$ is $\sqrt{\pi/3}$ $\pi/\sqrt{3}$ $\sqrt{2 \pi/3}$ $2 \pi / \sqrt{3}$
1 vote
8
Let $R$ be the triangle in the $xy$ – plane bounded by the $x$-axis, the line $y=x$, and the line $x=1$. The value of the double integral $\int \int_R \frac{\sin x}{x}\: dxdy$ is $1-\cos 1$ $\cos 1$ $\frac{\pi}{2}$ $\pi$
9
The value of $\displaystyle \lim_{n \to \infty} \left[ (n+1) \int_0^1 x^n \ln(1+x) dx \right]$ is $0$ $\ln 2$ $\ln 3$ $\infty$
10
Let $0 < \alpha < \beta < 1$. Then $\Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$ is equal to $\log_e \frac{\beta}{\alpha}$ $\log_e \frac{1+ \beta}{1 + \alpha}$ $\log_e \frac{1+\alpha }{1+ \beta}$ $\infty$
11
If $f$ is continuous in $[0,1]$ then $\displaystyle \lim_ {n \to \infty} \sum_{j=0}^{[n/2]} \frac{1}{n} f \left(\frac{j}{n} \right)$ (where $[y]$ is the largest integer less than or equal to $y$) does not exist exists and is equal to $\frac{1}{2} \int_0^1 f(x) dx$ exists and is equal to $\int_0^1 f(x) dx$ exists and is equal to $\int_0^{1/2} f(x) dx$
1 vote
12
f(x) is a differentiable function that satisfies 5 ≤ f′(x) ≤ 14 for all x. Let a and b be the maximum and minimum values, respectively, that f(11)−f(3) can possibly have, then what is the value of a+b?
1 vote
13
The value of $\underset{x \to 0}{\lim} \dfrac{\tan ^2 x – x \tan x }{\sin x}$ is $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $0$ None of these
14
Let $I=\int (\sin x – \cos x)(\sin x + \cos x)^3 dx$ and $K$ be a constant of integration. Then the value of $I$ is $(\sin x + \cos x)^4+K$ $(\sin x + \cos x)^2+K$ $- \frac{1}{4} (\sin x + \cos x)^4+K$ None of these
15
The Taylor series expansion of $f(x)= \text{ln}(1+x^2)$ about $x=0$ is $\sum _{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ $\sum _{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n}}{n}$ $\sum _{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{n+1}$ $\sum _{n=0}^{\infty} (-1)^{n+1} \frac{x^{n+1}}{n+1}$
1 vote
16
$\underset{x \to 1}{\lim} \dfrac{x^{\frac{1}{3}}-1}{x^{\frac{1}{4}}-1}$ equals $\frac{4}{3}$ $\frac{3}{4}$ $1$ None of these
17
The piecewise linear function for the following graph is $f(x) = \begin{cases} = x, \: x \leq -2 \\ =4, \: -2<x<3 \\ =x+1, \: x \geq 3 \end{cases}$ $f(x) = \begin{cases} = x-2, \: x \leq -2 \\ =4, \: -2<x<3 \\ =x-1, \: x \geq 3 \end{cases}$ ... $f(x) = \begin{cases} = 2-x, \: x \leq -2 \\ =4, \: -2<x<3 \\ =x+1, \: x \geq 3 \end{cases}$
The area bounded by $y=x^2-4$, $y=0$ and $x=4$ is $\frac{64}{3}$ $6$ $\frac{16}{3}$ $\frac{32}{3}$
$\underset{x \to -1}{\lim} \dfrac{1+\sqrt[3]{x}}{1+\sqrt[5]{x}}$ equals $\frac{3}{5}$ $\frac{5}{3}$ $1$ $\infty$
$\underset{x \to 0}{\lim} x \sin \left( \frac{1}{x} \right)$ equals $-1$ $0$ $1$ Does not exist