search
Log In
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

Web Page

Syllabus: Matrices, determinants, System of linear equations, Eigenvalues and eigenvectors, LU decomposition.

$$\scriptsize{\overset{{\large{\textbf{Mark Distribution in Previous GATE}}}}{\begin{array}{|c|c|c|c|c|c|c|c|}\hline
\textbf{Year}&\textbf{2021-1}&\textbf{2021-2}&\textbf{2020}&\textbf{2019}&\textbf{2018}&\textbf{2017-1}&\textbf{2017-2}&\textbf{2016-1}&\textbf{2016-2}&\textbf{Minimum}&\textbf{Average}&\textbf{Maximum}
\\\hline\textbf{1 Mark Count}&0&1&0&1&1&1&1&1&2&0&0.88&2
\\\hline\textbf{2 Marks Count}&1&1&1&1&1&2&1&0&0&0&0.88&2
\\\hline\textbf{Total Marks}&2&3&2&3&3&5&3&1&2&\bf{1}&\bf{2.66}&\bf{5}\\\hline
\end{array}}}$$

Recent questions in Linear Algebra

6 votes
4 answers
1
Suppose that $P$ is a $4 \times 5$ matrix such that every solution of the equation $\text{Px=0}$ is a scalar multiple of $\begin{bmatrix} 2 & 5 & 4 &3 & 1 \end{bmatrix}^T$. The rank of $P$ is __________
asked Feb 18 in Linear Algebra Arjun 1.2k views
1 vote
2 answers
2
Consider the following matrix.$\begin{pmatrix} 0 & 1 & 1 & 1\\ 1& 0& 1 & 1\\ 1& 1 & 0 & 1 \\1 & 1 & 1 & 0 \end{pmatrix}$The largest eigenvalue of the above matrix is __________.
asked Feb 18 in Linear Algebra Arjun 965 views
1 vote
2 answers
3
Consider the matrix $A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Find $A^n,$ in terms of $n,$ for $n\geq2.$
asked Jan 29 in Linear Algebra soujanyareddy13 129 views
0 votes
2 answers
4
The matrices $\begin{bmatrix} \cos\theta &-\sin \theta \\ \sin \theta & cos \theta \end{bmatrix}$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ commute under the multiplication if $a=b \text{(or)} \theta =n\pi, \: n$ is an integer always never if $a\cos \theta \neq b\sin \theta$
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 189 views
0 votes
1 answer
5
0 votes
1 answer
6
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 133 views
0 votes
0 answers
7
If product of matrix $A=\begin{bmatrix}\cos^{2}\theta &\cos \theta \sin \theta \\ \cos \theta \sin \theta &\sin ^{2} \theta& \end{bmatrix}$ and $B=\begin{bmatrix}\cos^{2}\phi &\cos \phi \sin \phi \\ \cos \phi \sin \phi &\sin ^{2} \phi& \end{bmatrix}$ is a ... and $\phi$ differ by an odd multiple of $\pi$ even multiple of $\pi$ odd multiple of $\dfrac{\pi}{2}$ even multiple of $\dfrac{\pi}{2}$
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 149 views
0 votes
1 answer
8
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiplied by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
asked Apr 1, 2020 in Linear Algebra Lakshman Patel RJIT 192 views
0 votes
2 answers
9
0 votes
1 answer
10
0 votes
1 answer
11
0 votes
2 answers
12
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
asked Mar 31, 2020 in Linear Algebra Lakshman Patel RJIT 2k views
1 vote
2 answers
14
0 votes
1 answer
15
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$
asked Mar 30, 2020 in Linear Algebra Lakshman Patel RJIT 221 views
1 vote
2 answers
16
$AVA=A$ is called : Identity law De Morgan’s law Idempotent law Complement law
asked Mar 26, 2020 in Linear Algebra jothee 131 views
0 votes
0 answers
17
How many corner does a cube have in 4 dimensions? How many 3D faces? Now by observation we can tell that, an n-dimensional cube has $2^n$ corners. 1D cube which is a line have $2^1$ corners 2D cube which is a square have $2^2$ corners 3D cube have $2^3$ corners ... 8 three-dimension cubes. but this is the question i'm not able to answer. How every N-cube have $|2n|$ cubes of dimension (N-1)?
asked Feb 26, 2020 in Linear Algebra Mk Utkarsh 283 views
5 votes
2 answers
18
Let $A$ and $B$ be two $n \times n$ matrices over real numbers. Let rank($M$) and $\text{det}(M)$ denote the rank and determinant of a matrix $M$, respectively. Consider the following statements. $\text{rank}(AB) = \text{rank }(A) \text{rank }(B)$ ... Which of the above statements are TRUE? I and II only I and IV only II and III only III and IV only
asked Feb 12, 2020 in Linear Algebra Arjun 3.5k views
0 votes
1 answer
19
The hour needle of a clock is malfunctioning and travels in the anti-clockwise direction, i.e., opposite to the usual direction, at the same speed it would have if it was working correctly. The minute needle is working correctly. Suppose the two needles show the correct time at $12$ noon, thus ... ? $\dfrac{10}{11}$ hour $\dfrac{11}{12}$ hour $\dfrac{12}{13}$ hour $\dfrac{19}{22}$ hour One hour
asked Feb 11, 2020 in Linear Algebra Lakshman Patel RJIT 199 views
1 vote
1 answer
20
Let $A$ be am $n\times n$ invertible matrix with real entries whose column sums are all equal to $1$. Consider the following statements: Every column in the matrix $A^{2}$ sums to $2$ Every column in the matrix $A^{3}$ sums to $3$ Every column in the matrix $A^{-1}$ ... $(3)$ is correct but not statements $(1)$ or $(2)$ all the $3$ statements $(1),(2),$ and $(3)$ are correct
asked Feb 10, 2020 in Linear Algebra Lakshman Patel RJIT 352 views
...