search
Log In

Web Page

Syllabus: Matrices, determinants, System of linear equations, Eigenvalues and eigenvectors, LU decomposition.

$$\small{\overset{{\large{\textbf{Mark Distribution in Previous GATE}}}}{\begin{array}{|c|c|c|c|c|c|c|c|}\hline
\textbf{Year}&\textbf{2019}&\textbf{2018}&\textbf{2017-1}&\textbf{2017-2}&\textbf{2016-1}&\textbf{2016-2}&\textbf{Minimum}&\textbf{Average}&\textbf{Maximum}
\\\hline\textbf{1 Mark Count}&1&1&1&1&1&2&1&1.2&2
\\\hline\textbf{2 Marks Count}&1&1&2&1&0&0&0&0.8&2
\\\hline\textbf{Total Marks}&3&3&5&3&1&2&\bf{1}&\bf{2.5}&\bf{5}\\\hline
\end{array}}}$$

Recent questions in Linear Algebra

0 votes
2 answers
1
The matrices $\begin{bmatrix} \cos\theta &-\sin \theta \\ \sin \theta & cos \theta \end{bmatrix}$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ commute under the multiplication if $a=b \text{(or)} \theta =n\pi, \: n$ is an integer always never if $a\cos \theta \neq b\sin \theta$
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 148 views
0 votes
1 answer
2
0 votes
1 answer
3
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 99 views
0 votes
0 answers
4
If product of matrix $A=\begin{bmatrix}\cos^{2}\theta &\cos \theta \sin \theta \\ \cos \theta \sin \theta &\sin ^{2} \theta& \end{bmatrix}$ and $B=\begin{bmatrix}\cos^{2}\phi &\cos \phi \sin \phi \\ \cos \phi \sin \phi &\sin ^{2} \phi& \end{bmatrix}$ is a ... and $\phi$ differ by an odd multiple of $\pi$ even multiple of $\pi$ odd multiple of $\dfrac{\pi}{2}$ even multiple of $\dfrac{\pi}{2}$
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 100 views
0 votes
1 answer
5
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiplied by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
asked Apr 1, 2020 in Linear Algebra Lakshman Patel RJIT 149 views
0 votes
2 answers
6
0 votes
1 answer
8
0 votes
2 answers
9
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
asked Mar 31, 2020 in Linear Algebra Lakshman Patel RJIT 532 views
1 vote
2 answers
11
0 votes
1 answer
12
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$
asked Mar 30, 2020 in Linear Algebra Lakshman Patel RJIT 183 views
1 vote
2 answers
13
$AVA=A$ is called : Identity law De Morgan’s law Idempotent law Complement law
asked Mar 26, 2020 in Linear Algebra jothee 101 views
0 votes
0 answers
14
How many corner does a cube have in 4 dimensions? How many 3D faces? Now by observation we can tell that, an n-dimensional cube has $2^n$ corners. 1D cube which is a line have $2^1$ corners 2D cube which is a square have $2^2$ corners 3D cube have $2^3$ corners ... 8 three-dimension cubes. but this is the question i'm not able to answer. How every N-cube have $|2n|$ cubes of dimension (N-1)?
asked Feb 26, 2020 in Linear Algebra Mk Utkarsh 222 views
6 votes
5 answers
15
Let $G$ be a group of $35$ elements. Then the largest possible size of a subgroup of $G$ other than $G$ itself is _______.
asked Feb 12, 2020 in Linear Algebra Arjun 2.8k views
5 votes
3 answers
16
Let $A$ and $B$ be two $n \times n$ matrices over real numbers. Let rank($M$) and $\text{det}(M)$ denote the rank and determinant of a matrix $M$, respectively. Consider the following statements. $\text{rank}(AB) = \text{rank }(A) \text{rank }(B)$ ... Which of the above statements are TRUE? I and II only I and IV only II and III only III and IV only
asked Feb 12, 2020 in Linear Algebra Arjun 2.4k views
0 votes
1 answer
17
The hour needle of a clock is malfunctioning and travels in the anti-clockwise direction, i.e., opposite to the usual direction, at the same speed it would have if it was working correctly. The minute needle is working correctly. Suppose the two needles show the correct time at $12$ noon, thus ... ? $\dfrac{10}{11}$ hour $\dfrac{11}{12}$ hour $\dfrac{12}{13}$ hour $\dfrac{19}{22}$ hour One hour
asked Feb 11, 2020 in Linear Algebra Lakshman Patel RJIT 117 views
1 vote
1 answer
18
Let $A$ be am $n\times n$ invertible matrix with real entries whose column sums are all equal to $1$. Consider the following statements: Every column in the matrix $A^{2}$ sums to $2$ Every column in the matrix $A^{3}$ sums to $3$ Every column in the matrix $A^{-1}$ ... $(3)$ is correct but not statements $(1)$ or $(2)$ all the $3$ statements $(1),(2),$ and $(3)$ are correct
asked Feb 10, 2020 in Linear Algebra Lakshman Patel RJIT 214 views
0 votes
0 answers
19
Let $d\geq 4$ and fix $w\in \mathbb{R}.$ Let $S = \{a = (a_{0},a_{1},\dots ,a_{d})\in \mathbb{R}^{d+1}\mid f_{a}(w) = 0\: \text{and}\: f'_{a}(w) = 0\},$ where the polynomial function $f_{a}(x)$ ... $d$-dimensional vector subspace of $\mathbb{R}^{d+1}$ $S$ is a $(d-1)$-dimensional vector subspace of $\mathbb{R}^{d+1}$ None of the other options
asked Feb 10, 2020 in Linear Algebra Lakshman Patel RJIT 132 views
2 votes
1 answer
20
Let $M$ be a real $n\times n$ matrix such that for$ every$ non-zero vector $x\in \mathbb{R}^{n},$ we have $x^{T}M x> 0.$ Then Such an $M$ cannot exist Such $Ms$ exist and their rank is always $n$ Such $Ms$ exist, but their eigenvalues are always real No eigenvalue of any such $M$ can be real None of the above
asked Feb 10, 2020 in Linear Algebra Lakshman Patel RJIT 198 views
...