search
Log In

Materials:

Recent questions tagged functions

2 votes
2 answers
1
Consider the following sets, where $n \geq 2$: $S_1$: Set of all $n \times n$ matrices with entries from the set $\{ a, b, c\}$ $S_2$: Set of all functions from the set $\{0,1,2, \dots, n^2-1\}$ to the set $\{0, 1, 2\}$ Which of the following ... to $S_2$ There exists a surjection from $S_1$ to $S_2$ There exists a bijection from $S_1$ to $S_2$ There does not exist an injection from $S_1$ to $S_2$
asked Feb 18 in Set Theory & Algebra Arjun 569 views
1 vote
2 answers
2
Consider the following $\text{ANSI C}$ function: int SimpleFunction(int Y[], int n, int x) { int total = Y[0], loopIndex; for (loopIndex=1; loopIndex<=n-1; loopIndex++) total=x*total +Y[loopIndex]; return total; } Let $\textsf{Z}$ be an array of $10$ elements with $\textsf{Z}[i]=1$, for all $i$ such that $0 \leq i \leq 9$. The value returned by $\textsf{SimpleFunction(Z},10,2)$ is __________
asked Feb 18 in Programming and DS Arjun 310 views
0 votes
0 answers
3
Consider the following functions defined from the interval $(0,1)$ to real numbers. Which of these functions attain their maximum value in the interval $(0,1)?$ $f(x)=\frac{1}{x(1-x)}$ $g(x)=-(x-0.75)^2$ $u(x)=\sin(\frac{\pi x}{2})$ $v(x)=x^2+2x$
asked Jan 29 in Others soujanyareddy13 29 views
0 votes
1 answer
4
If $f:\{a,b\}^{\ast}\rightarrow \{a,b\}^{\ast }$ be given by $f(n)=ax$ for every value of $n\in \{a,b\}$, then $f$ is one to one not onto one to one and onto not one to one and not onto not one to one and onto
asked Apr 2, 2020 in Set Theory & Algebra Lakshman Patel RJIT 194 views
1 vote
1 answer
5
1 vote
1 answer
7
0 votes
1 answer
9
The functions mapping $R$ into $R$ are defined as : $f\left(x \right)=x^{3} - 4x, g\left(x \right)=\frac{1}{x^{2}+1}$ and $h\left(x \right)=x^{4}.$ Then find the value of the following composite functions : $h_{o}g\left(x \right)$ and $h_{o}g_{o}f\left(x \right)$ ... $\left ( x^{2}+1 \right )^{-4}$ and $\left [ \left ( x^{3}-4x \right )^{2}+1 \right ]^{-4}$
asked Mar 24, 2020 in Set Theory & Algebra jothee 158 views
0 votes
2 answers
10
Which of the following cannot be passed to a function in C++? Constant Structure Array Header file
asked Mar 24, 2020 in Object Oriented Programming jothee 598 views
0 votes
1 answer
11
Which one of the following is correct for overloaded functions in $C++$? Compiler sets up a separate function for every definition of function. Compiler does not set up a separate function for every definition of function. Overloaded functions cannot handle different types of objects. Overloaded functions cannot have same number of arguments.
asked Mar 24, 2020 in Object Oriented Programming jothee 262 views
1 vote
1 answer
12
X AND Y is an arbitrary sets, F: $X\rightarrow Y$ show that a and b are equivalent F is one-one For all set Z and function g1: $Z\rightarrow X$ and g2: $Z\rightarrow X$, if $g1 \neq g2$ implies $f \bigcirc g1 \neq f \bigcirc g2$ Where $\bigcirc$ is a fucntion composition.
asked Feb 17, 2020 in Set Theory & Algebra vivek_mishra 398 views
3 votes
1 answer
13
In the following procedure Integer procedure P(X,Y); Integer X,Y; value x; begin K=5; L=8; P=x+y; end $X$ is called by value and $Y$ is called by name. If the procedure were invoked by the following program fragment K=0; L=0; Z=P(K,L); then the value of $Z$ will be set equal to $5$ $8$ $13$ $0$
asked Jan 13, 2020 in Programming Satbir 801 views
2 votes
2 answers
14
If $f(x)$ is a real valued function such that $2f(x)+3f(-x)=15-4x$, for every $x \in \mathbb{R}$, then $f(2)$ is $-15$ $22$ $11$ $0$
asked Sep 23, 2019 in Calculus Arjun 218 views
2 votes
3 answers
15
If $f(x) = \dfrac{\sqrt{3} \sin x}{2+\cos x}$, then the range of $f(x)$ is the interval $[-1 , \sqrt{3}{/2}]$ the interval $[-\sqrt{3}{/2}, 1]$ the interval $[-1, 1]$ none of these
asked Sep 23, 2019 in Calculus Arjun 165 views
1 vote
0 answers
16
Suppose that the function $h(x)$ is defined as $h(x)=g(f(x))$ where $g(x)$ is monotone increasing, $f(x)$ is concave, and $g’’(x)$ and $f’’(x)$ exist for all $x$. Then $h(x)$ is always concave always convex not necessarily concave None of these
asked Sep 23, 2019 in Calculus Arjun 157 views
0 votes
1 answer
17
Let $f(x) = \dfrac{2x}{x-1}, \: x \neq 1$. State which of the following statements is true. For all real $y$, there exists $x$ such that $f(x)=y$ For all real $y \neq 1$, there exists $x$ such that $f(x)=y$ For all real $y \neq 2$, there exists $x$ such that $f(x)=y$ None of the above is true
asked Sep 23, 2019 in Calculus Arjun 104 views
1 vote
0 answers
18
Let $f(x)$ be a continuous function from $[0,1]$ to $[0,1]$ satisfying the following properties. $f(0)=0$, $f(1)=1$, and $f(x_1)<f(x_2)$ for $x_1 < x_2$ with $0 < x_1, \: x_2<1$. Then the number of such functions is $0$ $1$ $2$ $\infty$
asked Sep 23, 2019 in Calculus Arjun 179 views
1 vote
2 answers
19
Let $f: \bigg( – \dfrac{\pi}{2}, \dfrac{\pi}{2} \bigg) \to \mathbb{R}$ be a continuous function, $f(x) \to +\infty$ as $x \to \dfrac{\pi^-}{2}$ and $f(x) \to – \infty$ as $x \to -\dfrac{\pi^+}{2}$. Which one of the following functions satisfies the above properties of $f(x)$? $\cos x$ $\tan x$ $\tan^{-1} x$ $\sin x$
asked Sep 23, 2019 in Calculus Arjun 160 views
0 votes
0 answers
20
Let $f(x) = \begin{cases}\mid \:x \mid +1, & \text{ if } x<0 \\ 0, & \text{ if } x=0 \\ \mid \:x \mid -1, & \text{ if } x>0. \end{cases}$ Then $\underset{x \to a}{\lim} f(x)$ exists if $a=0$ for all $a \in R$ for all $a \neq 0$ only if $a=1$
asked Sep 23, 2019 in Calculus Arjun 107 views
...