menu
Login
Register
search
Log In
account_circle
Log In
Email or Username
Password
Remember
Log In
Register
I forgot my password
Register
Username
Email
Password
Register
add
Activity
Questions
Unanswered
Tags
Subjects
Users
Ask
Prev
Blogs
New Blog
Exams
Quick search syntax
tags
tag:apple
author
user:martin
title
title:apple
content
content:apple
exclude
-tag:apple
force match
+apple
views
views:100
score
score:10
answers
answers:2
is accepted
isaccepted:true
is closed
isclosed:true
Recent Posts
Barc Interview Experience 2020- CSE stream
JEST 2021 registrations are open
TIFR GS-2021 Online Application portal
IIT Jodhpur Mtech AI - Interview Expierence (Summer Admission)
Interview experience at IIT Tirupati for MS program winter admission
Subjects
All categories
General Aptitude
(2.1k)
Engineering Mathematics
(8.5k)
Digital Logic
(3k)
Programming and DS
(5.1k)
Algorithms
(4.5k)
Theory of Computation
(6.3k)
Compiler Design
(2.2k)
Operating System
(4.7k)
Databases
(4.3k)
CO and Architecture
(3.5k)
Computer Networks
(4.3k)
Non GATE
(1.2k)
Others
(1.3k)
Admissions
(595)
Exam Queries
(838)
Tier 1 Placement Questions
(16)
Job Queries
(71)
Projects
(19)
Unknown Category
(1.1k)
Recent questions tagged integration
Recent Blog Comments
hi this pdf have gate prevoius year questions or...
Thanks, dude for sharing your experience !! It...
Congratulations, at least you made it to the...
seems like you really enjoyed the process.......
I wrote an email to IISC regarding JEST 2021 but...
Network Sites
GO Mechanical
GO Electrical
GO Electronics
GO Civil
CSE Doubts
Recent questions tagged integration
0
votes
1
answer
1
NIELIT 2016 MAR Scientist B - Section B: 9
The value of improper integral $\displaystyle\int_{0}^{1} x\ln x =?$ $1/4$ $0$ $-1/4$ $1$
The value of improper integral $\displaystyle\int_{0}^{1} x\ln x =?$ $1/4$ $0$ $-1/4$ $1$
asked
Mar 31, 2020
in
Calculus
Lakshman Patel RJIT
125
views
nielit2016mar-scientistb
engineering-mathematics
calculus
integration
definite-integrals
0
votes
1
answer
2
NIELIT 2016 MAR Scientist B - Section B: 11
What is the derivative w.r.t $x$ of the function given by $\large \Phi(x)= \displaystyle \int_{0}^{x^2}\sqrt t\:dt$, $2x^2$ $\sqrt x$ $0$ $1$
What is the derivative w.r.t $x$ of the function given by $\large \Phi(x)= \displaystyle \int_{0}^{x^2}\sqrt t\:dt$, $2x^2$ $\sqrt x$ $0$ $1$
asked
Mar 31, 2020
in
Calculus
Lakshman Patel RJIT
113
views
nielit2016mar-scientistb
engineering-mathematics
calculus
integration
definite-integrals
2
votes
1
answer
3
ISI2014-DCG-12
The integral $\int _0^{\frac{\pi}{2}} \frac{\sin^{50} x}{\sin^{50}x +\cos^{50}x} dx$ equals $\frac{3 \pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{4}$ none of these
The integral $\int _0^{\frac{\pi}{2}} \frac{\sin^{50} x}{\sin^{50}x +\cos^{50}x} dx$ equals $\frac{3 \pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{4}$ none of these
asked
Sep 23, 2019
in
Calculus
Arjun
220
views
isi2014-dcg
calculus
definite-integrals
integration
3
votes
1
answer
4
ISI2014-DCG-31
For real $\alpha$, the value of $\int_{\alpha}^{\alpha+1} [x]dx$, where $[x]$ denotes the largest integer less than or equal to $x$, is $\alpha$ $[\alpha]$ $1$ $\dfrac{[\alpha] + [\alpha +1]}{2}$
For real $\alpha$, the value of $\int_{\alpha}^{\alpha+1} [x]dx$, where $[x]$ denotes the largest integer less than or equal to $x$, is $\alpha$ $[\alpha]$ $1$ $\dfrac{[\alpha] + [\alpha +1]}{2}$
asked
Sep 23, 2019
in
Calculus
Arjun
144
views
isi2014-dcg
calculus
integration
definite-integrals
0
votes
1
answer
5
ISI2014-DCG-47
The value of the definite integral $\int_0^{\pi} \mid \frac{1}{2} + \cos x \mid dx$ is $\frac{\pi}{6} + \sqrt{3}$ $\frac{\pi}{6} - \sqrt{3}$ $0$ $\frac{1}{2}$
The value of the definite integral $\int_0^{\pi} \mid \frac{1}{2} + \cos x \mid dx$ is $\frac{\pi}{6} + \sqrt{3}$ $\frac{\pi}{6} - \sqrt{3}$ $0$ $\frac{1}{2}$
asked
Sep 23, 2019
in
Calculus
Arjun
124
views
isi2014-dcg
calculus
integration
definite-integrals
0
votes
1
answer
6
ISI2014-DCG-53
The value of the integral $\displaystyle{}\int_{-1}^1 \dfrac{x^2}{1+x^2} \sin x \sin 3x \sin 5x dx$ is $0$ $\frac{1}{2}$ $ – \frac{1}{2}$ $1$
The value of the integral $\displaystyle{}\int_{-1}^1 \dfrac{x^2}{1+x^2} \sin x \sin 3x \sin 5x dx$ is $0$ $\frac{1}{2}$ $ – \frac{1}{2}$ $1$
asked
Sep 23, 2019
in
Calculus
Arjun
204
views
isi2014-dcg
calculus
integration
definite-integrals
1
vote
0
answers
7
ISI2015-MMA-77
Let $R$ be the triangle in the $xy$ – plane bounded by the $x$-axis, the line $y=x$, and the line $x=1$. The value of the double integral $ \int \int_R \frac{\sin x}{x}\: dxdy$ is $1-\cos 1$ $\cos 1$ $\frac{\pi}{2}$ $\pi$
Let $R$ be the triangle in the $xy$ – plane bounded by the $x$-axis, the line $y=x$, and the line $x=1$. The value of the double integral $ \int \int_R \frac{\sin x}{x}\: dxdy$ is $1-\cos 1$ $\cos 1$ $\frac{\pi}{2}$ $\pi$
asked
Sep 23, 2019
in
Calculus
Arjun
109
views
isi2015-mma
integration
non-gate
0
votes
1
answer
8
ISI2015-DCG-46
Let $I=\int (\sin x – \cos x)(\sin x + \cos x)^3 dx$ and $K$ be a constant of integration. Then the value of $I$ is $(\sin x + \cos x)^4+K$ $(\sin x + \cos x)^2+K$ $- \frac{1}{4} (\sin x + \cos x)^4+K$ None of these
Let $I=\int (\sin x – \cos x)(\sin x + \cos x)^3 dx$ and $K$ be a constant of integration. Then the value of $I$ is $(\sin x + \cos x)^4+K$ $(\sin x + \cos x)^2+K$ $- \frac{1}{4} (\sin x + \cos x)^4+K$ None of these
asked
Sep 18, 2019
in
Calculus
gatecse
66
views
isi2015-dcg
calculus
integration
0
votes
1
answer
9
ISI2015-DCG-51
The area bounded by $y=x^2-4$, $y=0$ and $x=4$ is $\frac{64}{3}$ $6$ $\frac{16}{3}$ $\frac{32}{3}$
The area bounded by $y=x^2-4$, $y=0$ and $x=4$ is $\frac{64}{3}$ $6$ $\frac{16}{3}$ $\frac{32}{3}$
asked
Sep 18, 2019
in
Calculus
gatecse
107
views
isi2015-dcg
integration
definite-integrals
1
vote
1
answer
10
ISI2016-DCG-46
Let $I=\int(\sin\:x-\cos\:x)(\sin\:x+\cos\:x)^{3}dx$ and $K$ be a constant of integration. Then the value of $I$ is $(\sin\:x+\cos\:x)^{4}+K$ $(\sin\:x+\cos\:x)^{2}+K$ $-\frac{1}{4}(\sin\:x+\cos\:x)^{4}+K$ None of these
Let $I=\int(\sin\:x-\cos\:x)(\sin\:x+\cos\:x)^{3}dx$ and $K$ be a constant of integration. Then the value of $I$ is $(\sin\:x+\cos\:x)^{4}+K$ $(\sin\:x+\cos\:x)^{2}+K$ $-\frac{1}{4}(\sin\:x+\cos\:x)^{4}+K$ None of these
asked
Sep 18, 2019
in
Calculus
gatecse
92
views
isi2016-dcg
calculus
integration
non-gate
2
votes
1
answer
11
ISI2018-MMA-29
Let $f$ be a continuous function with $f(1) = 1$. Define $F(t)=\int_{t}^{t^2}f(x)dx$. The value of $F’(1)$ is $-2$ $-1$ $1$ $2$
Let $f$ be a continuous function with $f(1) = 1$. Define $F(t)=\int_{t}^{t^2}f(x)dx$. The value of $F’(1)$ is $-2$ $-1$ $1$ $2$
asked
May 11, 2019
in
Calculus
akash.dinkar12
360
views
isi2018-mma
engineering-mathematics
calculus
integration
1
vote
1
answer
12
ISI2019-MMA-29
Let $\psi : \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with $\psi(y) =0$ for all $y \notin [0,1]$ and $\int_{0}^{1} \psi(y) dy=1$. Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Then the value of $\lim _{n\rightarrow \infty}n \int_{0}^{100} f(x)\psi(nx)dx$ is $f(0)$ $f’(0)$ $f’’(0)$ $f(100)$
Let $\psi : \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with $\psi(y) =0$ for all $y \notin [0,1]$ and $\int_{0}^{1} \psi(y) dy=1$. Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Then the value of $\lim _{n\rightarrow \infty}n \int_{0}^{100} f(x)\psi(nx)dx$ is $f(0)$ $f’(0)$ $f’’(0)$ $f(100)$
asked
May 7, 2019
in
Calculus
Sayan Bose
786
views
isi2019-mma
engineering-mathematics
calculus
integration
0
votes
1
answer
13
ISI2019-MMA-28
Consider the functions $f,g:[0,1] \rightarrow [0,1]$ given by $f(x)=\frac{1}{2}x(x+1) \text{ and } g(x)=\frac{1}{2}x^2(x+1).$ Then the area enclosed between the graphs of $f^{-1}$ and $g^{-1}$ is $1/4$ $1/6$ $1/8$ $1/24$
Consider the functions $f,g:[0,1] \rightarrow [0,1]$ given by $f(x)=\frac{1}{2}x(x+1) \text{ and } g(x)=\frac{1}{2}x^2(x+1).$ Then the area enclosed between the graphs of $f^{-1}$ and $g^{-1}$ is $1/4$ $1/6$ $1/8$ $1/24$
asked
May 7, 2019
in
Calculus
Sayan Bose
1.1k
views
isi2019-mma
calculus
engineering-mathematics
integration
0
votes
1
answer
14
ISI2019-MMA-25
Let $a,b,c$ be non-zero real numbers such that $\int_{0}^{1} (1 + \cos^8x)(ax^2 + bx +c)dx = \int_{0}^{2}(1+ \cos^8x)(ax^2 + bx + c) dx =0$ Then the quadratic equation $ax^2 + bx +c=0$ has no roots in $(0,2)$ one root in $(0,2)$ and one root outside this interval one repeated root in $(0,2)$ two distinct real roots in $(0,2)$
Let $a,b,c$ be non-zero real numbers such that $\int_{0}^{1} (1 + \cos^8x)(ax^2 + bx +c)dx = \int_{0}^{2}(1+ \cos^8x)(ax^2 + bx + c) dx =0$ Then the quadratic equation $ax^2 + bx +c=0$ has no roots in $(0,2)$ one root in $(0,2)$ and one root outside this interval one repeated root in $(0,2)$ two distinct real roots in $(0,2)$
asked
May 7, 2019
in
Calculus
Sayan Bose
572
views
isi2019-mma
engineering-mathematics
calculus
integration
0
votes
0
answers
15
How to solve such question.
$\frac{d}{dx}\int_{1}^{x^4} sect\space dt$
$\frac{d}{dx}\int_{1}^{x^4} sect\space dt$
asked
Jan 20, 2019
in
Calculus
`JEET
154
views
calculus
integration
0
votes
0
answers
16
Ace Test Series: Calculus - Integration
Can anyone help me with solving this type of problem? I want some resource from where I can learn to solve this type on integration, as according to solution it is a function of α, so I did not understand the solution.
Can anyone help me with solving this type of problem? I want some resource from where I can learn to solve this type on integration, as according to solution it is a function of α, so I did not understand the solution.
asked
Jan 12, 2019
in
Calculus
jhaanuj2108
193
views
ace-test-series
calculus
integration
0
votes
0
answers
17
#integration
I=$\int_{1}^{\infty }a^{-ceil (log _{b} x ) } dx$
I=$\int_{1}^{\infty }a^{-ceil (log _{b} x ) } dx$
asked
Jan 3, 2019
in
Calculus
amit166
100
views
integration
0
votes
0
answers
18
#integration
$I=\int sin(2x) cos(3x) dx$ 1.(5cosx-cos5x)/10 2.(5sinx-sin5x)/10 3.both 4.none
$I=\int sin(2x) cos(3x) dx$ 1.(5cosx-cos5x)/10 2.(5sinx-sin5x)/10 3.both 4.none
asked
Jan 3, 2019
in
Calculus
amit166
127
views
integration
5
votes
2
answers
19
TIFR2019-A-13
Consider the integral $\int^{1}_{0} \frac{x^{300}}{1+x^2+x^3} dx$ What is the value of this integral correct up to two decimal places? $0.00$ $0.02$ $0.10$ $0.33$ $1.00$
Consider the integral $\int^{1}_{0} \frac{x^{300}}{1+x^2+x^3} dx$ What is the value of this integral correct up to two decimal places? $0.00$ $0.02$ $0.10$ $0.33$ $1.00$
asked
Dec 18, 2018
in
Calculus
Arjun
959
views
tifr2019
engineering-mathematics
calculus
integration
1
vote
0
answers
20
NIELIT 2018-16
The value of $\int_c \frac{2x^2-5}{(x+2)^2 (x^2+4)x^2}dx$, (where $c$ is the square with vertices $1+i, 2+i, 2+2i, i+2i$) is: $0$ $\pi i$ $2 \pi i$ $4 \pi i$
The value of $\int_c \frac{2x^2-5}{(x+2)^2 (x^2+4)x^2}dx$, (where $c$ is the square with vertices $1+i, 2+i, 2+2i, i+2i$) is: $0$ $\pi i$ $2 \pi i$ $4 \pi i$
asked
Dec 7, 2018
in
Others
Arjun
255
views
nielit-2018
non-gate
integration
1
vote
1
answer
21
NIELIT 2018-29
Using Green’s theorem in plane, evaluate $\int_c (2x-y) dx + (x+y)dy$, where $c$ is the circle $x^2+y^2=4$ in the plane: $2 \pi$ $4 \pi$ $-4 \pi$ $8 \pi$
Using Green’s theorem in plane, evaluate $\int_c (2x-y) dx + (x+y)dy$, where $c$ is the circle $x^2+y^2=4$ in the plane: $2 \pi$ $4 \pi$ $-4 \pi$ $8 \pi$
asked
Dec 7, 2018
in
Others
Arjun
208
views
nielit-2018
non-gate
integration
0
votes
0
answers
22
Gilbert Strang
$\int_{1}^{∞}\frac{dx}{x^6+1}$
$\int_{1}^{∞}\frac{dx}{x^6+1}$
asked
Nov 22, 2018
in
Calculus
aditi19
119
views
gilbert-strang
calculus
engineering-mathematics
integration
2
votes
1
answer
23
Calculus-Integration
$\int x^7.e^{x^4}dx$ How to do this?
$\int x^7.e^{x^4}dx$ How to do this?
asked
Nov 22, 2018
in
Calculus
Ayush Upadhyaya
191
views
calculus
integration
0
votes
1
answer
24
Integration
$\int_{0}^{1}\frac{x^{\alpha }-1}{logx}dx$ where $\alpha>0$
$\int_{0}^{1}\frac{x^{\alpha }-1}{logx}dx$ where $\alpha>0$
asked
Nov 16, 2018
in
Calculus
srestha
238
views
integration
calculus
engineering-mathematics
Page:
1
2
3
4
next »
...