search
Log In

Recent questions tagged kenneth-rosen

0 votes
0 answers
1
a) Find the characteristic roots of the linear homogeneous recurrence relation $a_{n} = a_{n-4}.$ [Note: These include complex numbers.] Find the solution of the recurrence relation in part $(A)$ with $a_{0} = 1, a_{1} = 0, a_{2} = -1,\: \text{and}\: a_{3} = 1.$
asked May 5 in Combinatory Lakshman Patel RJIT 14 views
0 votes
1 answer
2
Find the characteristic roots of the linear homogeneous recurrence relation $a_{n} = 2a_{n-1} - 2a_{n-2}.$ [Note: These are complex numbers.] Find the solution of the recurrence relation in part $(A)$ with $a_{0} = 1\:\text{and}\: a_{1} = 2.$
asked May 5 in Combinatory Lakshman Patel RJIT 19 views
0 votes
0 answers
3
Let an be the sum of the first $n$ triangular numbers, that is, $a_{n} = \displaystyle{}\sum_{k = 1}^{n} t_{k},\:\text{where}\: t_{k} = k(k + 1)/2.$ Show that $\{an\}$ satisfies the linear nonhomogeneous recurrence relation $a_{n} = a_{n-1} + n(n + 1)/2$ and the initial condition $a_{1} = 1.$ Use Theorem $6$ to determine a formula for $a_{n}$ by solving this recurrence relation.
asked May 5 in Combinatory Lakshman Patel RJIT 15 views
0 votes
0 answers
4
Let an be the sum of the first $n$ perfect squares, that is, $a_{n} = \displaystyle{}\sum_{k = 1}^{n} k^{2}.$ Show that the sequence $\{a_{n}\}$ satisfies the linear nonhomogeneous recurrence relation $a_{n} = a_{n-1} + n^{2}$ and the initial condition $a_{1} = 1.$ Use Theorem $6$ to determine a formula for $a_{n}$ by solving this recurrence relation.
asked May 5 in Combinatory Lakshman Patel RJIT 19 views
0 votes
0 answers
9
0 votes
0 answers
10
0 votes
0 answers
12
0 votes
0 answers
13
What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_{n} = 8a_{n-2} - 16a_{n-4} + F(n)$ if $F(n) = n^{3}?$ $F(n) = (-2)^{n}?$ $F(n) = n2^{n}? $ $F(n) = n^{2}4^{n}?$ $F(n) = (n^{2} - 2)(-2)^{n}?$ $F(n) = n^{4}2^{n}?$ $F(n) = 2?$
asked May 5 in Combinatory Lakshman Patel RJIT 9 views
0 votes
0 answers
14
What is the general form of the particular solution guaranteed to exist by Theorem $6$ of the linear nonhomogeneous recurrence relation $a_{n} = 6a_{n-1} - 12a_{n-2} + 8a_{n-3} + F (n)$ if $F (n) = n^{2}?$ $F (n) = 2^{n}?$ $F (n) = n2^{n}?$ $F (n) = (-2)^{n}?$ $F (n) = n^{2}2^{n}?$ $F (n) = n^{3}(-2)^{n}?$ $F (n) = 3?$
asked May 5 in Combinatory Lakshman Patel RJIT 12 views
0 votes
0 answers
15
Determine values of the constants $A$ and $B$ such that $a_{n} = A{n} + B$ is a solution of recurrence relation $a_{n} = 2a_{n-1} + n + 5.$ Use Theorem $5$ to find all solutions of this recurrence relation. Find the solution of this recurrence relation with $a_{0} = 4.$
asked May 5 in Combinatory Lakshman Patel RJIT 12 views
0 votes
0 answers
16
Consider the nonhomogeneous linear recurrence relation $a_{n} = 2a_{n-1} + 2^{n}.$ Show that $a_{n} = n2^{n}$ is a solution of this recurrence relation. Use Theorem $5$ to find all solutions of this recurrence relation. Find the solution with $a_{0} = 2.$
asked May 5 in Combinatory Lakshman Patel RJIT 16 views
0 votes
0 answers
17
Consider the nonhomogeneous linear recurrence relation $a_{n} = 3a_{n-1} + 2^{n}.$ Show that $a_{n} = -2^{n+1}$ is a solution of this recurrence relation. Use Theorem $5$ to find all solutions of this recurrence relation. Find the solution with $a_{0} = 1.$
asked May 5 in Combinatory Lakshman Patel RJIT 13 views
0 votes
0 answers
23
Prove this identity relating the Fibonacci numbers and the binomial coefficients: $f_{n+1} = C(n, 0) + C(n − 1, 1) +·\dots+ C(n − k, k),$ where $n$ is a positive integer and $k = n/2 .$ [Hint: Let $a_{n} = C(n, 0) + C(n − 1, 1) +\dots·+ C(n − k, k).$ Show that the sequence $\{a_{n}\}$ satisfies the same recurrence relation and initial conditions satisfied by the sequence of Fibonacci numbers.]
asked May 3 in Combinatory Lakshman Patel RJIT 10 views
0 votes
0 answers
24
Prove Theorem $3:$ Let $c_{1},c_{2},\dots,c_{k}$ be real numbers. Suppose that the characteristic equation $r^{k}-c_{1}r^{k-1}-\dots - c_{k} = 0$ has $k$ distinct roots $r_{1},r_{2},\dots r_{k}.$ Then a sequence $\{a_{n}\}$ ... $n = 0,1,2,\dots,$ where $\alpha_{1},\alpha_{2},\dots,\alpha_{k}$ are constants.
asked May 3 in Combinatory Lakshman Patel RJIT 11 views
0 votes
0 answers
29
The Lucas numbers satisfy the recurrence relation $L_{n} = L_{n−1} + L_{n−2},$ and the initial conditions $L_{0} = 2$ and $L_{1} = 1.$ Show that $L_{n} = f_{n−1} + f_{n+1}\: \text{for}\: n = 2, 3,\dots,$ where fn is the $n^{\text{th}}$ Fibonacci number. Find an explicit formula for the Lucas numbers.
asked May 3 in Combinatory Lakshman Patel RJIT 9 views
0 votes
0 answers
30
Prove Theorem $2:$ Let $c_{1}$ and $c_{2}$ be real numbers with $c_{2}\neq 0.$ Suppose that $r^{2}-c_{1}r-c_{2} = 0$ has only one root $r_{0}.$ A sequence $\{a_{n}\}$ is a solution of the recurrence relation $a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2}$ if and only if $a_{n} = \alpha_{1}r_{0}^{n} + \alpha_{2}nr_{0}^{n},$ for $n = 0,1,2,\dots,$ where $\alpha_{1}$ and $\alpha_{2}$ are constants.
asked May 3 in Combinatory Lakshman Patel RJIT 10 views
...