menu
Login
Register
search
Log In
account_circle
Log In
Email or Username
Password
Remember
Log In
Register
I forgot my password
Register
Username
Email
Password
Register
add
Activity
Questions
Unanswered
Tags
Subjects
Users
Ask
Prev
Blogs
New Blog
Exams
Quick search syntax
tags
tag:apple
author
user:martin
title
title:apple
content
content:apple
exclude
-tag:apple
force match
+apple
views
views:100
score
score:10
answers
answers:2
is accepted
isaccepted:true
is closed
isclosed:true
Recent Posts
Barc Interview Experience 2020- CSE stream
JEST 2021 registrations are open
TIFR GS-2021 Online Application portal
IIT Jodhpur Mtech AI - Interview Expierence (Summer Admission)
Interview experience at IIT Tirupati for MS program winter admission
Subjects
All categories
General Aptitude
(2.1k)
Engineering Mathematics
(8.5k)
Digital Logic
(3k)
Programming and DS
(5.1k)
Algorithms
(4.5k)
Theory of Computation
(6.3k)
Compiler Design
(2.2k)
Operating System
(4.7k)
Databases
(4.3k)
CO and Architecture
(3.5k)
Computer Networks
(4.3k)
Non GATE
(1.2k)
Others
(1.3k)
Admissions
(595)
Exam Queries
(838)
Tier 1 Placement Questions
(16)
Job Queries
(71)
Projects
(19)
Unknown Category
(1.1k)
Recent questions tagged linear-algebra
Recent Blog Comments
yeah right!
@atulbrk IISc is mentioned only...
@nephron Please share the link of the PDF of the...
I think The JEST website rercently updated the...
hi this pdf have gate prevoius year questions or...
Network Sites
GO Mechanical
GO Electrical
GO Electronics
GO Civil
CSE Doubts
Webpage for Linear Algebra
Recent questions tagged linear-algebra
0
votes
2
answers
1
NIELIT 2016 MAR Scientist C - Section B: 3
The matrices $\begin{bmatrix} \cos\theta &-\sin \theta \\ \sin \theta & cos \theta \end{bmatrix}$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ commute under the multiplication if $a=b \text{(or)} \theta =n\pi, \: n$ is an integer always never if $a\cos \theta \neq b\sin \theta$
The matrices $\begin{bmatrix} \cos\theta &-\sin \theta \\ \sin \theta & cos \theta \end{bmatrix}$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ commute under the multiplication if $a=b \text{(or)} \theta =n\pi, \: n$ is an integer always never if $a\cos \theta \neq b\sin \theta$
asked
Apr 2, 2020
in
Linear Algebra
Lakshman Patel RJIT
142
views
nielit2016mar-scientistc
linear-algebra
matrices
0
votes
1
answer
2
NIELIT 2016 MAR Scientist C - Section B: 8
The eigenvalues of the matrix $\begin{bmatrix}1 & 2\\ 4 & 3 \end{bmatrix}$ are $\text{5 and -5}$ $\text{5 and -1}$ $\text{1 and -5}$ $\text{2 and 3}$
The eigenvalues of the matrix $\begin{bmatrix}1 & 2\\ 4 & 3 \end{bmatrix}$ are $\text{5 and -5}$ $\text{5 and -1}$ $\text{1 and -5}$ $\text{2 and 3}$
asked
Apr 2, 2020
in
Linear Algebra
Lakshman Patel RJIT
99
views
nielit2016mar-scientistc
engineering-mathematics
linear-algebra
0
votes
1
answer
3
NIELIT 2016 MAR Scientist C - Section B: 9
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
asked
Apr 2, 2020
in
Linear Algebra
Lakshman Patel RJIT
98
views
nielit2016mar-scientistc
engineering-mathematics
linear-algebra
0
votes
0
answers
4
NIELIT 2016 MAR Scientist C - Section B: 19
If product of matrix $A=\begin{bmatrix}\cos^{2}\theta &\cos \theta \sin \theta \\ \cos \theta \sin \theta &\sin ^{2} \theta& \end{bmatrix}$ ... by an odd multiple of $\pi$ even multiple of $\pi$ odd multiple of $\dfrac{\pi}{2}$ even multiple of $\dfrac{\pi}{2}$
If product of matrix $A=\begin{bmatrix}\cos^{2}\theta &\cos \theta \sin \theta \\ \cos \theta \sin \theta &\sin ^{2} \theta& \end{bmatrix}$ and $B=\begin{bmatrix}\cos^{2}\phi &\cos \phi \sin \phi \\ \cos \phi \sin \phi &\sin ^{2} \phi& \end{bmatrix}$ is a ... and $\phi$ differ by an odd multiple of $\pi$ even multiple of $\pi$ odd multiple of $\dfrac{\pi}{2}$ even multiple of $\dfrac{\pi}{2}$
asked
Apr 2, 2020
in
Linear Algebra
Lakshman Patel RJIT
96
views
nielit2016mar-scientistc
linear-algebra
matrices
0
votes
1
answer
5
NIELIT 2017 OCT Scientific Assistant A (IT) - Section B: 7
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiplied by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiplied by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
asked
Apr 1, 2020
in
Linear Algebra
Lakshman Patel RJIT
147
views
nielit2017oct-assistanta-it
linear-algebra
matrices
determinant
0
votes
2
answers
6
NIELIT 2017 OCT Scientific Assistant A (CS) - Section C: 9
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiple by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiple by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
asked
Apr 1, 2020
in
Linear Algebra
Lakshman Patel RJIT
184
views
nielit2017oct-assistanta-cs
engineering-mathematics
linear-algebra
matrices
determinant
0
votes
1
answer
7
NIELIT 2016 MAR Scientist B - Section B: 4
What is the determinant of the matrix $\begin{bmatrix}5&3&2\\1&2&6\\3&5&10\end{bmatrix}$ $-76$ $-28$ $+28$ $+72$
What is the determinant of the matrix $\begin{bmatrix}5&3&2\\1&2&6\\3&5&10\end{bmatrix}$ $-76$ $-28$ $+28$ $+72$
asked
Mar 31, 2020
in
Linear Algebra
Lakshman Patel RJIT
190
views
nielit2016mar-scientistb
engineering-mathematics
linear-algebra
determinant
0
votes
1
answer
8
NIELIT 2016 MAR Scientist B - Section B: 6
The system of simultaneous equations $x+2y+z=6\\2x+y+2z=6\\x+y+z=5$ has unique solution. infinite number of solutions. no solution. exactly two solutions.
The system of simultaneous equations $x+2y+z=6\\2x+y+2z=6\\x+y+z=5$ has unique solution. infinite number of solutions. no solution. exactly two solutions.
asked
Mar 31, 2020
in
Linear Algebra
Lakshman Patel RJIT
171
views
nielit2016mar-scientistb
engineering-mathematics
linear-algebra
system-of-equations
0
votes
2
answers
9
NIELIT 2016 MAR Scientist B - Section B: 12
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
asked
Mar 31, 2020
in
Linear Algebra
Lakshman Patel RJIT
512
views
nielit2016mar-scientistb
engineering-mathematics
linear-algebra
determinant
0
votes
3
answers
10
NIELIT 2016 DEC Scientist B (IT) - Section B: 26
Two eigenvalues of a $3\times3$ real matrix $P$ are $(2+ \sqrt-1)$ and $3$. The determinant of $P$ is ________. $0$ $1$ $15$ $-1$
Two eigenvalues of a $3\times3$ real matrix $P$ are $(2+ \sqrt-1)$ and $3$. The determinant of $P$ is ________. $0$ $1$ $15$ $-1$
asked
Mar 31, 2020
in
Linear Algebra
Lakshman Patel RJIT
213
views
nielit2016dec-scientistb-it
engineering-mathematics
linear-algebra
determinant
eigen-value
1
vote
2
answers
11
NIELIT 2016 DEC Scientist B (CS) - Section B: 21
Let $A,B,C,D$ be $n\times n$ matrices, each with non-zero determinant. If $ABCD=1$, then $B^{-1}$ is: $D^{-1}C^{-1}A^{-1}$ $CDA$ $ADC$ Does not necessarily exist.
Let $A,B,C,D$ be $n\times n$ matrices, each with non-zero determinant. If $ABCD=1$, then $B^{-1}$ is: $D^{-1}C^{-1}A^{-1}$ $CDA$ $ADC$ Does not necessarily exist.
asked
Mar 31, 2020
in
Linear Algebra
Lakshman Patel RJIT
229
views
nielit2016dec-scientistb-cs
engineering-mathematics
linear-algebra
matrices
determinant
0
votes
1
answer
12
NIELIT 2017 DEC Scientist B - Section B: 60
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$
asked
Mar 30, 2020
in
Linear Algebra
Lakshman Patel RJIT
182
views
nielit2017dec-scientistb
engineering-mathematics
linear-algebra
matrices
0
votes
0
answers
13
Introduction to Linear Algebra 4th edition Problem Set 1.1
How many corner does a cube have in 4 dimensions? How many 3D faces? Now by observation we can tell that, an n-dimensional cube has $2^n$ corners. 1D cube which is a line have $2^1$ corners 2D cube which is a square have $2^2$ ... . but this is the question i'm not able to answer. How every N-cube have $|2n|$ cubes of dimension (N-1)?
How many corner does a cube have in 4 dimensions? How many 3D faces? Now by observation we can tell that, an n-dimensional cube has $2^n$ corners. 1D cube which is a line have $2^1$ corners 2D cube which is a square have $2^2$ corners 3D cube have $2^3$ corners ... 8 three-dimension cubes. but this is the question i'm not able to answer. How every N-cube have $|2n|$ cubes of dimension (N-1)?
asked
Feb 26, 2020
in
Linear Algebra
Mk Utkarsh
222
views
linear-algebra
1
vote
1
answer
14
TIFR2020-A-5
Let $A$ be am $n\times n$ invertible matrix with real entries whose column sums are all equal to $1$. Consider the following statements: Every column in the matrix $A^{2}$ sums to $2$ Every column in the matrix $A^{3}$ sums to $3$ Every column in the matrix $A^{-1}$ ... statement $(3)$ is correct but not statements $(1)$ or $(2)$ all the $3$ statements $(1),(2),$ and $(3)$ are correct
Let $A$ be am $n\times n$ invertible matrix with real entries whose column sums are all equal to $1$. Consider the following statements: Every column in the matrix $A^{2}$ sums to $2$ Every column in the matrix $A^{3}$ sums to $3$ Every column in the matrix $A^{-1}$ ... $(3)$ is correct but not statements $(1)$ or $(2)$ all the $3$ statements $(1),(2),$ and $(3)$ are correct
asked
Feb 10, 2020
in
Linear Algebra
Lakshman Patel RJIT
213
views
tifr2020
engineering-mathematics
linear-algebra
matrices
0
votes
0
answers
15
TIFR2020-A-3
Let $d\geq 4$ and fix $w\in \mathbb{R}.$ Let $S = \{a = (a_{0},a_{1},\dots ,a_{d})\in \mathbb{R}^{d+1}\mid f_{a}(w) = 0\: \text{and}\: f'_{a}(w) = 0\},$ where the polynomial function $f_{a}(x)$ ... is a $d$-dimensional vector subspace of $\mathbb{R}^{d+1}$ $S$ is a $(d-1)$-dimensional vector subspace of $\mathbb{R}^{d+1}$ None of the other options
Let $d\geq 4$ and fix $w\in \mathbb{R}.$ Let $S = \{a = (a_{0},a_{1},\dots ,a_{d})\in \mathbb{R}^{d+1}\mid f_{a}(w) = 0\: \text{and}\: f'_{a}(w) = 0\},$ where the polynomial function $f_{a}(x)$ ... $d$-dimensional vector subspace of $\mathbb{R}^{d+1}$ $S$ is a $(d-1)$-dimensional vector subspace of $\mathbb{R}^{d+1}$ None of the other options
asked
Feb 10, 2020
in
Linear Algebra
Lakshman Patel RJIT
131
views
tifr2020
engineering-mathematics
linear-algebra
vector-space
2
votes
1
answer
16
TIFR2020-A-2
Let $M$ be a real $n\times n$ matrix such that for$ every$ non-zero vector $x\in \mathbb{R}^{n},$ we have $x^{T}M x> 0.$ Then Such an $M$ cannot exist Such $Ms$ exist and their rank is always $n$ Such $Ms$ exist, but their eigenvalues are always real No eigenvalue of any such $M$ can be real None of the above
Let $M$ be a real $n\times n$ matrix such that for$ every$ non-zero vector $x\in \mathbb{R}^{n},$ we have $x^{T}M x> 0.$ Then Such an $M$ cannot exist Such $Ms$ exist and their rank is always $n$ Such $Ms$ exist, but their eigenvalues are always real No eigenvalue of any such $M$ can be real None of the above
asked
Feb 10, 2020
in
Linear Algebra
Lakshman Patel RJIT
197
views
tifr2020
engineering-mathematics
linear-algebra
rank-of-matrix
eigen-value
3
votes
3
answers
17
ISI2014-DCG-8
If $M$ is a $3 \times 3$ matrix such that $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}M=\begin{bmatrix}1 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix}3 & 4 & 5 \end{bmatrix} M = \begin{bmatrix}0 & 1 & 0 \end{bmatrix}$ ... $\begin{bmatrix} -1 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 9 & 10 & 8 \end{bmatrix}$
If $M$ is a $3 \times 3$ matrix such that $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}M=\begin{bmatrix}1 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix}3 & 4 & 5 \end{bmatrix} M = \begin{bmatrix}0 & 1 & 0 \end{bmatrix}$ then $\begin{bmatrix}6 & 7 & 8 \end{bmatrix}M$ is ... $\begin{bmatrix}0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 9 & 10 & 8 \end{bmatrix}$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
333
views
isi2014-dcg
linear-algebra
matrices
2
votes
1
answer
18
ISI2014-DCG-9
The values of $\eta$ for which the following system of equations $\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$ has a solution are $\eta=1, -2$ $\eta=-1, -2$ $\eta=3, -3$ $\eta=1, 2$
The values of $\eta$ for which the following system of equations $\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$ has a solution are $\eta=1, -2$ $\eta=-1, -2$ $\eta=3, -3$ $\eta=1, 2$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
198
views
isi2014-dcg
linear-algebra
system-of-equations
1
vote
1
answer
19
ISI2014-DCG-25
The determinant $\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix}$ equals $\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ ... $3\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ None of these
The determinant $\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix}$ equals $\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ $2\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ $3\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ None of these
asked
Sep 23, 2019
in
Linear Algebra
Arjun
161
views
isi2014-dcg
linear-algebra
determinant
2
votes
1
answer
20
ISI2014-DCG-38
Suppose that $A$ is a $3 \times 3$ real matrix such that for each $u=(u_1, u_2, u_3)’ \in \mathbb{R}^3, \: u’Au=0$ where $u’$ stands for the transpose of $u$. Then which one of the following is true? $A’=-A$ $A’=A$ $AA’=I$ None of these
Suppose that $A$ is a $3 \times 3$ real matrix such that for each $u=(u_1, u_2, u_3)’ \in \mathbb{R}^3, \: u’Au=0$ where $u’$ stands for the transpose of $u$. Then which one of the following is true? $A’=-A$ $A’=A$ $AA’=I$ None of these
asked
Sep 23, 2019
in
Linear Algebra
Arjun
190
views
isi2014-dcg
linear-algebra
matrices
0
votes
1
answer
21
ISI2014-DCG-64
The value of $\lambda$ such that the system of equation $\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = & 4 \end{array}$ has no solution is $3$ $1$ $0$ $-3$
The value of $\lambda$ such that the system of equation $\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = & 4 \end{array}$ has no solution is $3$ $1$ $0$ $-3$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
197
views
isi2014-dcg
linear-algebra
matrices
system-of-equations
0
votes
0
answers
22
ISI2014-DCG-70
For the matrices $A = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $(B^{-1}AB)^3$ is equal to $\begin{pmatrix} a^3 & a^3 \\ 0 & a^3 \end{pmatrix}$ ... $\begin{pmatrix} a^3 & 0 \\ 3a^3 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 0 \\ -3a^3 & a^3 \end{pmatrix}$
For the matrices $A = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $(B^{-1}AB)^3$ is equal to $\begin{pmatrix} a^3 & a^3 \\ 0 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 3a^3 \\ 0 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 0 \\ 3a^3 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 0 \\ -3a^3 & a^3 \end{pmatrix}$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
138
views
isi2014-dcg
linear-algebra
matrices
inverse
1
vote
1
answer
23
ISI2015-MMA-37
Let $a$ be a non-zero real number. Define $f(x) = \begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix}$ for $x \in \mathbb{R}$. Then, the number of distinct real roots of $f(x) =0$ is $1$ $2$ $3$ $4$
Let $a$ be a non-zero real number. Define $f(x) = \begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix}$ for $x \in \mathbb{R}$. Then, the number of distinct real roots of $f(x) =0$ is $1$ $2$ $3$ $4$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
269
views
isi2015-mma
linear-algebra
determinant
functions
0
votes
0
answers
24
ISI2015-MMA-38
A real $2 \times 2$ matrix $M$ such that $M^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1- \varepsilon \end{pmatrix}$ exists for all $\varepsilon > 0$ does not exist for any $\varepsilon > 0$ exists for some $\varepsilon > 0$ none of the above is true
A real $2 \times 2$ matrix $M$ such that $M^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1- \varepsilon \end{pmatrix}$ exists for all $\varepsilon > 0$ does not exist for any $\varepsilon > 0$ exists for some $\varepsilon > 0$ none of the above is true
asked
Sep 23, 2019
in
Linear Algebra
Arjun
221
views
isi2015-mma
linear-algebra
matrices
5
votes
3
answers
25
ISI2015-MMA-39
The eigenvalues of the matrix $X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ are $1,1,4$ $1,4,4$ $0,1,4$ $0,4,4$
The eigenvalues of the matrix $X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ are $1,1,4$ $1,4,4$ $0,1,4$ $0,4,4$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
368
views
isi2015-mma
linear-algebra
matrices
eigen-value
0
votes
0
answers
26
ISI2015-MMA-40
Let $x_1, x_2, x_3, x_4, y_1, y_2, y_3$ and $y_4$ be fixed real numbers, not all of them equal to zero. Define a $4 \times 4$ matrix $\textbf{A}$ ... $(\textbf{A})$ equals $1$ or $2$ $0$ $4$ $2$ or $3$
Let $x_1, x_2, x_3, x_4, y_1, y_2, y_3$ and $y_4$ be fixed real numbers, not all of them equal to zero. Define a $4 \times 4$ matrix $\textbf{A}$ ... $(\textbf{A})$ equals $1$ or $2$ $0$ $4$ $2$ or $3$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
186
views
isi2015-mma
linear-algebra
matrices
rank-of-matrix
1
vote
2
answers
27
ISI2015-MMA-42
Let $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of the matrix $A \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & \sin t \\ 0 & - \sin t & \cos t \end{pmatrix}.$ If $\lambda_1+\lambda_2+\lambda_3 = \sqrt{2}+1$ ... $\{ - \frac{\pi}{4}, \frac{\pi}{4} \}$ $\{ - \frac{\pi}{3}, \frac{\pi}{3} \}$
Let $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of the matrix $A \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & \sin t \\ 0 & – \sin t & \cos t \end{pmatrix}.$ If $\lambda_1+\lambda_2+\lambda_3 = \sqrt{2}+1$, then the set of possible values of $t, \: – \pi \leq t < \pi$, is Empty set $\{ \frac{\pi}{4} \}$ $\{ – \frac{\pi}{4}, \frac{\pi}{4} \}$ $\{ – \frac{\pi}{3}, \frac{\pi}{3} \}$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
314
views
isi2015-mma
linear-algebra
matrices
eigen-value
0
votes
1
answer
28
ISI2015-MMA-43
The values of $\eta$ for which the following system of equations $\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$ has a solution are $\eta = 1, -2$ $\eta = -1, -2$ $\eta = 3, -3$ $\eta = 1, 2$
The values of $\eta$ for which the following system of equations $\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$ has a solution are $\eta = 1, -2$ $\eta = -1, -2$ $\eta = 3, -3$ $\eta = 1, 2$
asked
Sep 23, 2019
in
Linear Algebra
Arjun
177
views
isi2015-mma
linear-algebra
system-of-equations
0
votes
3
answers
29
ISI2015-MMA-44
Let $P_1$, $P_2$ and $P_3$ denote, respectively, the planes defined by $\begin{array} {} a_1x +b_1y+c_1z=\alpha _1 \\ a_2x +b_2y+c_2z=\alpha _2 \\ a_3x +b_3y+c_3z=\alpha _3 \end{array}$ It is given that $P_1$, $P_2$ and $P_3$ ... then the planes do not have any common point of intersection intersect at a unique point intersect along a straight line intersect along a plane
Let $P_1$, $P_2$ and $P_3$ denote, respectively, the planes defined by $\begin{array} {} a_1x +b_1y+c_1z=\alpha _1 \\ a_2x +b_2y+c_2z=\alpha _2 \\ a_3x +b_3y+c_3z=\alpha _3 \end{array}$ It is given that $P_1$, $P_2$ and $P_3$ intersect ... then the planes do not have any common point of intersection intersect at a unique point intersect along a straight line intersect along a plane
asked
Sep 23, 2019
in
Linear Algebra
Arjun
221
views
isi2015-mma
linear-algebra
system-of-equations
Page:
1
2
3
4
5
6
...
17
next »
...