search
Log In

Recent questions tagged linear-algebra

0 votes
2 answers
1
The matrices $\begin{bmatrix} \cos\theta &-\sin \theta \\ \sin \theta & cos \theta \end{bmatrix}$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ commute under the multiplication if $a=b \text{(or)} \theta =n\pi, \: n$ is an integer always never if $a\cos \theta \neq b\sin \theta$
asked Apr 2 in Linear Algebra Lakshman Patel RJIT 46 views
0 votes
1 answer
2
0 votes
1 answer
3
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
asked Apr 2 in Linear Algebra Lakshman Patel RJIT 42 views
0 votes
0 answers
4
If product of matrix $A=\begin{bmatrix}\cos^{2}\theta &\cos \theta \sin \theta \\ \cos \theta \sin \theta &\sin ^{2} \theta& \end{bmatrix}$ and $B=\begin{bmatrix}\cos^{2}\phi &\cos \phi \sin \phi \\ \cos \phi \sin \phi &\sin ^{2} \phi& \end{bmatrix}$ is a ... and $\phi$ differ by an odd multiple of $\pi$ even multiple of $\pi$ odd multiple of $\dfrac{\pi}{2}$ even multiple of $\dfrac{\pi}{2}$
asked Apr 2 in Linear Algebra Lakshman Patel RJIT 38 views
0 votes
1 answer
5
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiplied by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
asked Apr 1 in Linear Algebra Lakshman Patel RJIT 92 views
0 votes
2 answers
6
0 votes
1 answer
8
0 votes
2 answers
9
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
asked Mar 31 in Linear Algebra Lakshman Patel RJIT 149 views
0 votes
1 answer
12
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$
asked Mar 30 in Linear Algebra Lakshman Patel RJIT 99 views
0 votes
0 answers
13
How many corner does a cube have in 4 dimensions? How many 3D faces? Now by observation we can tell that, an n-dimensional cube has $2^n$ corners. 1D cube which is a line have $2^1$ corners 2D cube which is a square have $2^2$ corners 3D cube have $2^3$ corners ... 8 three-dimension cubes. but this is the question i'm not able to answer. How every N-cube have $|2n|$ cubes of dimension (N-1)?
asked Feb 26 in Linear Algebra Mk Utkarsh 186 views
1 vote
1 answer
14
Let $A$ be am $n\times n$ invertible matrix with real entries whose column sums are all equal to $1$. Consider the following statements: Every column in the matrix $A^{2}$ sums to $2$ Every column in the matrix $A^{3}$ sums to $3$ Every column in the matrix $A^{-1}$ ... $(3)$ is correct but not statements $(1)$ or $(2)$ all the $3$ statements $(1),(2),$ and $(3)$ are correct
asked Feb 10 in Linear Algebra Lakshman Patel RJIT 169 views
0 votes
0 answers
15
Let $d\geq 4$ and fix $w\in \mathbb{R}.$ Let $S = \{a = (a_{0},a_{1},\dots ,a_{d})\in \mathbb{R}^{d+1}\mid f_{a}(w) = 0\: \text{and}\: f'_{a}(w) = 0\},$ where the polynomial function $f_{a}(x)$ ... $d$-dimensional vector subspace of $\mathbb{R}^{d+1}$ $S$ is a $(d-1)$-dimensional vector subspace of $\mathbb{R}^{d+1}$ None of the other options
asked Feb 10 in Linear Algebra Lakshman Patel RJIT 95 views
2 votes
1 answer
16
Let $M$ be a real $n\times n$ matrix such that for$ every$ non-zero vector $x\in \mathbb{R}^{n},$ we have $x^{T}M x> 0.$ Then Such an $M$ cannot exist Such $Ms$ exist and their rank is always $n$ Such $Ms$ exist, but their eigenvalues are always real No eigenvalue of any such $M$ can be real None of the above
asked Feb 10 in Linear Algebra Lakshman Patel RJIT 135 views
2 votes
3 answers
17
If $M$ is a $3 \times 3$ matrix such that $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}M=\begin{bmatrix}1 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix}3 & 4 & 5 \end{bmatrix} M = \begin{bmatrix}0 & 1 & 0 \end{bmatrix}$ then $\begin{bmatrix}6 & 7 & 8 \end{bmatrix}M$ is ... $\begin{bmatrix}0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 9 & 10 & 8 \end{bmatrix}$
asked Sep 23, 2019 in Linear Algebra Arjun 264 views
2 votes
1 answer
18
The values of $\eta$ for which the following system of equations $\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$ has a solution are $\eta=1, -2$ $\eta=-1, -2$ $\eta=3, -3$ $\eta=1, 2$
asked Sep 23, 2019 in Linear Algebra Arjun 170 views
1 vote
1 answer
19
The determinant $\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix}$ equals $\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ $2\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ $3\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ None of these
asked Sep 23, 2019 in Linear Algebra Arjun 142 views
2 votes
1 answer
20
Suppose that $A$ is a $3 \times 3$ real matrix such that for each $u=(u_1, u_2, u_3)’ \in \mathbb{R}^3, \: u’Au=0$ where $u’$ stands for the transpose of $u$. Then which one of the following is true? $A’=-A$ $A’=A$ $AA’=I$ None of these
asked Sep 23, 2019 in Linear Algebra Arjun 167 views
0 votes
1 answer
21
The value of $\lambda$ such that the system of equation $\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = & 4 \end{array}$ has no solution is $3$ $1$ $0$ $-3$
asked Sep 23, 2019 in Linear Algebra Arjun 160 views
0 votes
0 answers
22
For the matrices $A = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $(B^{-1}AB)^3$ is equal to $\begin{pmatrix} a^3 & a^3 \\ 0 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 3a^3 \\ 0 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 0 \\ 3a^3 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 0 \\ -3a^3 & a^3 \end{pmatrix}$
asked Sep 23, 2019 in Linear Algebra Arjun 124 views
1 vote
1 answer
23
Let $a$ be a non-zero real number. Define $f(x) = \begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix}$ for $x \in \mathbb{R}$. Then, the number of distinct real roots of $f(x) =0$ is $1$ $2$ $3$ $4$
asked Sep 23, 2019 in Linear Algebra Arjun 235 views
0 votes
0 answers
24
A real $2 \times 2$ matrix $M$ such that $M^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1- \varepsilon \end{pmatrix}$ exists for all $\varepsilon > 0$ does not exist for any $\varepsilon > 0$ exists for some $\varepsilon > 0$ none of the above is true
asked Sep 23, 2019 in Linear Algebra Arjun 197 views
5 votes
3 answers
25
The eigenvalues of the matrix $X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ are $1,1,4$ $1,4,4$ $0,1,4$ $0,4,4$
asked Sep 23, 2019 in Linear Algebra Arjun 328 views
0 votes
0 answers
26
Let $x_1, x_2, x_3, x_4, y_1, y_2, y_3$ and $y_4$ be fixed real numbers, not all of them equal to zero. Define a $4 \times 4$ matrix $\textbf{A}$ ... $(\textbf{A})$ equals $1$ or $2$ $0$ $4$ $2$ or $3$
asked Sep 23, 2019 in Linear Algebra Arjun 172 views
1 vote
2 answers
27
Let $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of the matrix $A \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & \sin t \\ 0 & – \sin t & \cos t \end{pmatrix}.$ If $\lambda_1+\lambda_2+\lambda_3 = \sqrt{2}+1$, then the set of possible values of $t, \: – \pi \leq t < \pi$, is Empty set $\{ \frac{\pi}{4} \}$ $\{ – \frac{\pi}{4}, \frac{\pi}{4} \}$ $\{ – \frac{\pi}{3}, \frac{\pi}{3} \}$
asked Sep 23, 2019 in Linear Algebra Arjun 264 views
0 votes
1 answer
28
The values of $\eta$ for which the following system of equations $\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$ has a solution are $\eta = 1, -2$ $\eta = -1, -2$ $\eta = 3, -3$ $\eta = 1, 2$
asked Sep 23, 2019 in Linear Algebra Arjun 154 views
0 votes
2 answers
29
Let $P_1$, $P_2$ and $P_3$ denote, respectively, the planes defined by $\begin{array} {} a_1x +b_1y+c_1z=\alpha _1 \\ a_2x +b_2y+c_2z=\alpha _2 \\ a_3x +b_3y+c_3z=\alpha _3 \end{array}$ It is given that $P_1$, $P_2$ and $P_3$ intersect ... then the planes do not have any common point of intersection intersect at a unique point intersect along a straight line intersect along a plane
asked Sep 23, 2019 in Linear Algebra Arjun 190 views
1 vote
1 answer
30
Let $ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} \text{ and } B=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$ Then there exists a matrix $C$ such that $A=BC=CB$ there is no matrix $C$ such that $A=BC$ there exists a matrix $C$ such that $A=BC$, but $A \neq CB$ there is no matrix $C$ such that $A=CB$
asked Sep 23, 2019 in Linear Algebra Arjun 164 views
...