menu
Login
Register
search
Log In
account_circle
Log In
Email or Username
Password
Remember
Log In
Register
I forgot my password
Register
Username
Email
Password
Register
add
Activity
Questions
Unanswered
Tags
Subjects
Users
Ask
Prev
Blogs
New Blog
Exams
GO Book for GATECSE 2022
Quick search syntax
tags
tag:apple
author
user:martin
title
title:apple
content
content:apple
exclude
-tag:apple
force match
+apple
views
views:100
score
score:10
answers
answers:2
is accepted
isaccepted:true
is closed
isclosed:true
Exact tag match
Recent Posts
GATE 2021 AIR 26 journey and some useful tips
A Short Guide to GATE
Seeking DRDO Scientist B previous year papers
STRATEGY TO EFFECTIVELY CREATE SHORT & MICRO NOTES FOR GATE EXAM AND BEST REVISION STRATEGY BY AIR-"152"
My Video Experience AIR-152 GATE_CS(Some More motivation)!!!!!!
Subjects
All categories
General Aptitude
(2.1k)
Engineering Mathematics
(8.5k)
Digital Logic
(3.1k)
Programming and DS
(5.2k)
Algorithms
(4.5k)
Theory of Computation
(6.3k)
Compiler Design
(2.2k)
Operating System
(4.7k)
Databases
(4.3k)
CO and Architecture
(3.5k)
Computer Networks
(4.3k)
Non GATE
(1.2k)
Others
(1.5k)
Admissions
(595)
Exam Queries
(838)
Tier 1 Placement Questions
(16)
Job Queries
(71)
Projects
(19)
Unknown Category
(1.1k)
Follow @gateoverflow
GATE Overflow
Recent questions tagged matrices
Recent Blog Comments
Thanks bro :) It has been quite the...
Wow! Awesome! Congratulations brother
It's one of the top University in Canada.
Hi falgun09, If you don't mind me asking, which...
That's great!
Network Sites
GO Mechanical
GO Electrical
GO Electronics
GO Civil
CSE Doubts
Recent questions tagged matrices
4
votes
3
answers
1
GATE CSE 2021 Set 2 | Question: 24
Suppose that $P$ is a $4 \times 5$ matrix such that every solution of the equation $\text{Px=0}$ is a scalar multiple of $\begin{bmatrix} 2 & 5 & 4 &3 & 1 \end{bmatrix}^T$. The rank of $P$ is __________
Suppose that $P$ is a $4 \times 5$ matrix such that every solution of the equation $\text{Px=0}$ is a scalar multiple of $\begin{bmatrix} 2 & 5 & 4 &3 & 1 \end{bmatrix}^T$. The rank of $P$ is __________
asked
Feb 18
in
Linear Algebra
Arjun
600
views
gate2021-cse-set2
numerical-answers
linear-algebra
matrices
rank-of-matrix
1
vote
2
answers
2
GATE CSE 2021 Set 1 | Question: 52
Consider the following matrix. $\begin{pmatrix} 0 & 1 & 1 & 1\\ 1& 0& 1 & 1\\ 1& 1 & 0 & 1 \\1 & 1 & 1 & 0 \end{pmatrix}$ The largest eigenvalue of the above matrix is __________.
Consider the following matrix. $\begin{pmatrix} 0 & 1 & 1 & 1\\ 1& 0& 1 & 1\\ 1& 1 & 0 & 1 \\1 & 1 & 1 & 0 \end{pmatrix}$ The largest eigenvalue of the above matrix is __________.
asked
Feb 18
in
Linear Algebra
Arjun
472
views
gate2021-cse-set1
linear-algebra
matrices
eigen-value
numerical-answers
1
vote
1
answer
3
CMI-2018-DataScience-A: 1
If $P$ is an invertible matrix and $A=PBP^{-1},$ then which of the following statements are necessarily true? $B=P^{-1}AP$ $|A|=|B|$ $A$ is invertible if and only if $B$ is invertible $B^T=A^T$
If $P$ is an invertible matrix and $A=PBP^{-1},$ then which of the following statements are necessarily true? $B=P^{-1}AP$ $|A|=|B|$ $A$ is invertible if and only if $B$ is invertible $B^T=A^T$
asked
Jan 29
in
Others
soujanyareddy13
131
views
cmi2018-datascience
matrices
linear-algebra
0
votes
2
answers
4
CMI-2018-DataScience-A: 2
Let ... $|A|=|B|$ $|C|=|D|$ $|B|=-|C|$ $|A|=-|D|$
Let $A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, B=\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}, C=\begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{bmatrix}$ and $D=\begin{bmatrix} -1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 8 & -9 \end{bmatrix}$. Which of the following statements are true? $|A|=|B|$ $|C|=|D|$ $|B|=-|C|$ $|A|=-|D|$
asked
Jan 29
in
Others
soujanyareddy13
72
views
cmi2018-datascience
matrices
linear-algebra
0
votes
2
answers
5
CMI-2018-DataScience-A: 3
Let $x=\begin{bmatrix} 3& 1 & 2 \end{bmatrix}$. Which of the following statements are true? $x^Tx$ is a $3\times 3$ matrix $xx^T$ is a $3\times 3$ matrix $xx^T$ is a $1\times 1$ matrix $xx^T=x^Tx$
Let $x=\begin{bmatrix} 3& 1 & 2 \end{bmatrix}$. Which of the following statements are true? $x^Tx$ is a $3\times 3$ matrix $xx^T$ is a $3\times 3$ matrix $xx^T$ is a $1\times 1$ matrix $xx^T=x^Tx$
asked
Jan 29
in
Others
soujanyareddy13
71
views
cmi2018-datascience
matrices
linear-algebra
discrete-mathematics
0
votes
1
answer
6
CMI-2018-DataScience-A: 4
A $n\times n$ matrix $A$ is said to be $symmetric$ if $A^T=A$. Suppose $A$ is an arbitrary $2\times 2$ matrix. Then which of the following matrices are symmetric (here $0$ denotes the $2\times 2$ matrix consisting of zeros): $A^TA$ $\begin{bmatrix} 0&A^T \\ A & 0 \end{bmatrix}$ $AA^T$ $\begin{bmatrix} A & 0 \\ 0 & A^T \end{bmatrix}$
A $n\times n$ matrix $A$ is said to be $symmetric$ if $A^T=A$. Suppose $A$ is an arbitrary $2\times 2$ matrix. Then which of the following matrices are symmetric (here $0$ denotes the $2\times 2$ matrix consisting of zeros): $A^TA$ $\begin{bmatrix} 0&A^T \\ A & 0 \end{bmatrix}$ $AA^T$ $\begin{bmatrix} A & 0 \\ 0 & A^T \end{bmatrix}$
asked
Jan 29
in
Others
soujanyareddy13
49
views
cmi2018-datascience
matrices
linear-algebra
discrete-mathematics
0
votes
0
answers
7
CMI-2018-DataScience-B: 2
For numerical answers, the following forms are acceptable: fractions, decimals, symbolic e.g.:$\left( \begin{array}{c} n \\ r \end{array} \right)^n P_r , n!$ etc. Suppose $A,B$ and $C$ are $m\times m$ matrices. What does the following algorithm compute? (Here $A(i,j)$ ... .) for i=1 to m for j=1 to m for k=1 to m C(i,j)=A(i,k)*B(k,j)+C(i,j) end end end
For numerical answers, the following forms are acceptable: fractions, decimals, symbolic e.g.:$\left( \begin{array}{c} n \\ r \end{array} \right)^n P_r , n!$ etc. Suppose $A,B$ and $C$ are $m\times m$ matrices. What does the following algorithm compute? (Here $A(i,j)$ denotes the $(i.j)^{th}$ entry of matrix $A$.) for i=1 to m for j=1 to m for k=1 to m C(i,j)=A(i,k)*B(k,j)+C(i,j) end end end
asked
Jan 29
in
Others
soujanyareddy13
20
views
cmi2018-datascience
matrices
linear-algebra
discrete-mathematics
0
votes
0
answers
8
CMI-2018-DataScience-B: 4
For numerical answers, the following forms are acceptable: fractions, decimals, symbolic e.g.:$\left( \begin{array}{c} n \\ r \end{array} \right)^n P_r , n!$ etc. In computing, a floating point operation (flop) is any one of the following operations ... . How does this number change if both the matrices are upper triangular?
For numerical answers, the following forms are acceptable: fractions, decimals, symbolic e.g.:$\left( \begin{array}{c} n \\ r \end{array} \right)^n P_r , n!$ etc. In computing, a floating point operation (flop) is any one of the following operations performed by a computer ... $c_{ij}=\displaystyle\sum^5 _{k=1} a_{ik} b_{kj}$. How does this number change if both the matrices are upper triangular?
asked
Jan 29
in
Others
soujanyareddy13
17
views
cmi2018-datascience
matrices
linear-algebra
discrete-mathematics
0
votes
0
answers
9
CMI-2018-DataScience-B: 17
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ By ... $1$ and member $2$ have at least one friend in common.
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ By convention, $A(i,i)=0$, i ... $A^4(1,3)=0$. Then which of the following are necessarily true? Give reasons. Member $1$ and member $2$ have at least one friend in common.
asked
Jan 29
in
Others
soujanyareddy13
11
views
cmi2018-datascience
matrices
0
votes
0
answers
10
CMI-2018-DataScience-B: 18
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ ... Then which of the following are necessarily true? Give reasons. $A^2(i,i)>0$ for all $i,\;1\underline< i \underline < m.$
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ By convention, $A(i,i)=0$, i.e. a person ... $A^2(i,i)>0$ for all $i,\;1\underline< i \underline < m.$
asked
Jan 29
in
Others
soujanyareddy13
14
views
cmi2018-datascience
matrices
0
votes
0
answers
11
CMI-2018-DataScience-B: 19
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ ... $A^4(1,3)=0$. Then which of the following are necessarily true? Give reasons. $m\underline < 9$
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ By convention, $A(i,i)=0$, i.e. a person ... $A^4(1,3)=0$. Then which of the following are necessarily true? Give reasons. $m\underline < 9$
asked
Jan 29
in
Others
soujanyareddy13
12
views
cmi2018-datascience
matrices
0
votes
0
answers
12
CMI-2018-DataScience-B: 20
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ ... $A^4(1,3)=0$. Then which of the following are necessarily true? Give reasons. $m\underline> 6$
$\text{Description for the following question:}$ A golf club has $m$ members with serial numbers $1,2,\dots ,m$. If members with serial numbers $i$ and $j$ are friends, then $A(i,j)=A(j,i)=1,$ otherwise $A(i,j)=A(j,i)=0.$ By convention, $A(i,i)=0$, i.e. a person ... $A^4(1,3)=0$. Then which of the following are necessarily true? Give reasons. $m\underline> 6$
asked
Jan 29
in
Others
soujanyareddy13
9
views
cmi2018-datascience
matrices
1
vote
1
answer
13
CMI-2020-DataScience-B: 2
Consider the matrix $A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Find $A^n,$ in terms of $n,$ for $n\geq2.$
Consider the matrix $A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Find $A^n,$ in terms of $n,$ for $n\geq2.$
asked
Jan 29
in
Linear Algebra
soujanyareddy13
76
views
cmi2020-datascience
linear-algebra
matrices
descriptive
Page:
1
2
3
4
5
6
...
10
next »
...