# Recent questions tagged numerical-ability

1
Given below are two statements: Statement $I$: $5$ divides $n^5-n$ wherever $n$ is a nonnegative integer Statement $II$: $6$ divides $n^3-n$ whenever $n$ is a nonnegative integer In the light of the above statements, choose the correct answer from the ... Statement $II$ are incorrect Statement $I$ is correct but Statement $II$ is incorrect Statement $I$ is incorrect but Statement $II$ is correct
2
The following table shows total number of students in the Department of the Institute along with percentage of Females and Male students. Answer the question based on the data given below: ... the number of females in Mechanical Department to the number of females in Electronics Department? $4:3$ $23:22$ $24:21$ $23:21$
3
The following table shows total number of students in the Department of the Institute along with percentage of Females and Male students. Answer the question based on the data given below: ... $2210$ $3210$ $3400$ $3310$
4
The following table shows total number of students in the Department of the Institute along with percentage of Females and Male students. Answer the question based on the data given below: ... $266$ $886$ $786$ $686$
5
The following table shows total number of students in the Department of the Institute along with percentage of Females and Male students. Answer the question based on the data given below: ... Electrical departments together to the number of males in the same departments together? $311: 270$ $329:261$ $411:469$ $311 : 269$
6
The following table shows total number of students in the Department of the Institute along with percentage of Females and Male students. Answer the question based on the data given below: ... is the average percentage of female students in the whole institute? $42.0 \%$ $41.0 \%$ $43.0 \%$ $41.5\%$
7
A can is filled with $5$ paise coins. Another can is filled with $10$ paise coins. Another can is filled with $25$ paise coins. All the cans are given wrong labels. If the can labeled $25$ paise is not having the $10$ paise coins, what will the can, labeled $10$ paise have? $25$ paise $5$ paise $10$ paise cannot be determined
1 vote
8
Find the smallest number $y$ such that $y\times 162$ ($y$ multiplied by $162$) is a perfect cube $24$ $27$ $36$ $38$
1 vote
9
When the sum of all possible two digit numbers formed from three different one digit natural numbers are divided by sum of the original three numbers, the result is $26$ $24$ $20$ $22$
10
Two straight lines are drawn perpendicular to each other in $X-Y$ plane. If $\alpha$ and $\beta$ are the acute angles the straight lines make with the $\text{X-}$ axis, then $\alpha + \beta$ is_______. $60^{\circ}$ $90^{\circ}$ $120^{\circ}$ $180^{\circ}$
11
The sequence $s_{0},s_{1},\dots , s_{9}$ is defined as follows: $s_{0} = s_{1} + 1$ $2s_{i} = s_{i-1} + s_{i+1} + 2 \text{ for } 1 \leq i \leq 8$ $2s_{9} = s_{8} + 2$ What is $s_{0}$? $81$ $95$ $100$ $121$ $190$
12
A contiguous part, i.e., a set of adjacent sheets, is missing from Tharoor's GRE preparation book. The number on the first missing page is $183$, and it is known that the number on the last missing page has the same three digits, but in a different order. Note that every sheet ... one at the front and one at the back. How many pages are missing from Tharoor's book? $45$ $135$ $136$ $198$ $450$
13
What is the maximum number of regions that the plane $\mathbb{R}^{2}$ can be partitioned into using $10$ lines? $25$ $50$ $55$ $56$ $1024$ Hint: Let $A(n)$ be the maximum number of partitions that can be made by $n$ lines. Observe that $A(0) = 1, A(2) = 2, A(2) = 4$ etc. Come up with a recurrence equation for $A(n)$.
14
If $x+2y=30$, then $\left(\dfrac{2y}{5}+\dfrac{x}{3} \right) + \left (\dfrac{x}{5}+\dfrac{2y}{3} \right)$ will be equal to $8$ $16$ $18$ $20$
15
The number of divisors of $6000$, where $1$ and $6000$ are also considered as divisors of $6000$ is $40$ $50$ $60$ $30$
1 vote
16
The sum of the series $\dfrac{1}{1.2} + \dfrac{1}{2.3}+ \cdots + \dfrac{1}{n(n+1)} + \cdots$ is $1$ $1/2$ $0$ non-existent
1 vote
17
The conditions on $a$, $b$ and $c$ under which the roots of the quadratic equation $ax^2+bx+c=0 \: ,a \neq 0, \: b \neq 0$ and $c \neq 0$, are unequal magnitude but of the opposite signs, are the following: $a$ and $c$ have the same sign while $b$ has the opposite sign ... $b$ have the same sign while $c$ has the opposite sign. $a$ and $c$ have the same sign. $a$, $b$ and $c$ have the same sign.
18
The sum of the series $\:3+11+\dots +(8n-5)\:$ is $4n^2-n$ $8n^2+3n$ $4n^2+4n-5$ $4n^2+2$
1 vote
19
Let $x_1 > x_2>0$. Then which of the following is true? $\log \big(\frac{x_1+x_2}{2}\big) > \frac{\log x_1+ \log x_2}{2}$ $\log \big(\frac{x_1+x_2}{2}\big) < \frac{\log x_1+ \log x_2}{2}$ There exist $x_1$ and $x_2$ such that $x_1 > x_2 >0$ and $\log \big(\frac{x_1+x_2}{2}\big) = \frac{\log x_1+ \log x_2}{2}$ None of these
1 vote
Consider the equation $P(x) =x^3+px^2+qx+r=0$ where $p,q$ and $r$ are all real and positive. State which of the following statements is always correct. All roots of $P(x) = 0$ are real The equation $P(x)=0$ has at least one real root The equation $P(x)=0$ has no negative real root The equation $P(x)=0$ must have one positive and one negative real root
Consider any integer $I=m^2+n^2$, where $m$ and $n$ are odd integers. Then $I$ is never divisible by $2$ $I$ is never divisible by $4$ $I$ is never divisible by $6$ None of the above
If $a,b,c$ are sides of a triangle $ABC$ such that $x^2-2(a+b+c)x+3 \lambda (ab+bc+ca)=0$ has real roots then $\lambda < \frac{4}{3}$ $\lambda > \frac{5}{3}$ $\lambda \in \big( \frac{4}{3}, \frac{5}{3}\big)$ $\lambda \in \big( \frac{1}{3}, \frac{5}{3}\big)$