search
Log In

Recent questions tagged theory-of-computation

5 votes
3 answers
1
Let $L \subseteq \{0,1\}^*$ be an arbitrary regular language accepted by a minimal $\text{DFA}$ with $k$ states. Which one of the following languages must necessarily be accepted by a minimal $\text{DFA}$ with $k$ states? $L-\{01\}$ $L \cup \{01\}$ $\{0,1\}^* – L$ $L \cdot L$
asked Feb 18 in Theory of Computation Arjun 909 views
2 votes
3 answers
2
Let $L_1$ be a regular language and $L_2$ be a context-free language. Which of the following languages is/are context-free? $L_1 \cap \overline{L_2} \\$ $\overline{\overline{L_1} \cup \overline{L_2}} \\$ $L_1 \cup (L_2 \cup \overline{L_2}) \\$ $(L_1 \cap L_2) \cup (\overline{L_1} \cap L_2)$
asked Feb 18 in Theory of Computation Arjun 727 views
1 vote
2 answers
3
2 votes
2 answers
4
Suppose we want to design a synchronous circuit that processes a string of $0$'s and $1$'s. Given a string, it produces another string by replacing the first $1$ in any subsequence of consecutive $1$'s by a $0$ ... $\begin{array}{l} t=s+b \\ y=s \overline{b} \end{array}$
asked Feb 18 in Theory of Computation Arjun 537 views
3 votes
1 answer
5
​​​​​​Consider the following two statements about regular languages: $S_1$: Every infinite regular language contains an undecidable language as a subset. $S_2$: Every finite language is regular. Which one of the following choices is correct? Only $S_1$ is true Only $S_2$ is true Both $S_1$ and $S_2$ are true Neither $S_1$ nor $S_2$ is true
asked Feb 18 in Theory of Computation Arjun 667 views
4 votes
2 answers
6
For a string $w$, we define $w^R$ to be the reverse of $w$. For example, if $w=01101$ then $w^R=10110$. Which of the following languages is/are context-free? $\{ wxw^Rx^R \mid w,x \in \{0,1\} ^* \}$ $\{ ww^Rxx^R \mid w,x \in \{0,1\} ^* \}$ $\{ wxw^R \mid w,x \in \{0,1\} ^* \}$ $\{ wxx^Rw^R \mid w,x \in \{0,1\} ^* \}$
asked Feb 18 in Theory of Computation Arjun 650 views
2 votes
1 answer
7
​​​​​​​Which of the following regular expressions represent(s) the set of all binary numbers that are divisible by three? Assume that the string $\epsilon$ is divisible by three. $(0+1(01^*0)^*1)^*$ $(0+11+10(1+00)^*01)^*$ $(0^*(1(01^*0)^*1)^*)^*$ $(0+11+11(1+00)^*00)^*$
asked Feb 18 in Theory of Computation Arjun 598 views
1 vote
3 answers
8
Suppose that $L_1$ is a regular language and $L_2$ is a context-free language. Which one of the following languages is $\text{NOT}$ necessarily context-free? $L_1 \cap L_2$ $L_1 \cdot L_2$ $L_1- L_2$ $L_1\cup L_2$
asked Feb 18 in Theory of Computation Arjun 591 views
3 votes
3 answers
9
Let $\langle M \rangle$ denote an encoding of an automaton $M$. Suppose that $\Sigma = \{0,1\}$. Which of the following languages is/are $\text{NOT}$ recursive? $L= \{ \langle M \rangle \mid M$ is a $\text{DFA}$ such that $L(M)=\emptyset \}$ $L= \{ \langle M \rangle \mid M$ is ... $L(M)=\emptyset \}$ $L= \{ \langle M \rangle \mid M$ is a $\text{PDA}$ such that $L(M)=\Sigma ^* \}$
asked Feb 18 in Theory of Computation Arjun 672 views
0 votes
1 answer
10
Consider the following language: $L= \{ w \in \{0,1\}^* \mid w \text{ ends with the substring } 011 \}$ Which one of the following deterministic finite automata accepts $L?$
asked Feb 18 in Theory of Computation Arjun 352 views
3 votes
3 answers
11
For a Turing machine $M$, $\langle M \rangle$ denotes an encoding of $M$ ... and $L_2$ are decidable $L_1$ is decidable and $L_2$ is undecidable $L_1$ is undecidable and $L_2$ is decidable Both $L_1$ and $L_2$ are undecidable
asked Feb 18 in Theory of Computation Arjun 548 views
3 votes
2 answers
12
In a pushdown automaton $P=(Q, \Sigma, \Gamma, \delta, q_0, F)$, a transition of the form, where $p,q \in Q$, $a \in \Sigma \cup \{ \epsilon \}$, and $X,Y \in \Gamma \cup \{ \epsilon \}$, represents $(q,Y) \in \delta(p,a,X). $ Consider the ... $\Gamma = \{ \#, A\}$. The number of strings of length $100$ accepted by the above pushdown automaton is ___________
asked Feb 18 in Theory of Computation Arjun 722 views
1 vote
2 answers
13
Consider $L=L_1 \cap L_2$ where $L_1 = \{ 0^m 1^m 20^n 1^n \mid m,n \geq 0 \}$ $L_2 = \{0^m1^n2^k \mid m,n,k \geq 0 \}$ Then, the language $L$ is Recursively enumerable but not context free Regular Context free but not regular Not recursive
asked Nov 20, 2020 in Theory of Computation jothee 330 views
0 votes
2 answers
14
Let $L_1$ and $L_2$ be languages over $\Sigma = \{a,b\}$ represented by the regular expressions $(a^* +b)^*$ and $(a+b)^*$ respectively. Which of the following is true with respect to the two languages? $L_1 \subset L_2$ $L_2 \subset L_1$ $L_1 = L_2$ $L_1 \cap L_2 = \phi$
asked Nov 20, 2020 in Theory of Computation jothee 314 views
1 vote
2 answers
15
Which of the following statements is true? The union of two context free languages is context free The intersection of two context free languages is context free The complement of a context free language is context free If a language is context free, it can always be accepted by a deterministic pushdown automaton
asked Nov 20, 2020 in Theory of Computation jothee 206 views
0 votes
2 answers
16
Consider the following languages: $L_1=\{a^{\grave{z}^z} \mid \grave{Z} \text{ is an integer} \}$ $L_2=\{a^{z\grave{z}} \mid \grave{Z} \geq 0\}$ $L_3=\{ \omega \omega \mid \omega \epsilon \{a,b\}^*\}$ Which of the languages is(are) regular? Choose the correct answer from the options given below: $L_1$ and $L_2$ only $L_1$ and $L_3$ only $L_1$ only $L_2$ only
asked Nov 20, 2020 in Theory of Computation jothee 214 views
...