Let $d(x, y)$ be the usual Euclidean metric on $\mathbb{R}^{2}$. Which of the following metric spaces is complete? $\mathbb{Q}^{2}\subset\mathbb{R}^{2}$ with the metric $d(x, y)$. $[0, 1]\times [0, \infty)\subset \mathbb{R}^{2}$ ... $[0, 1]\times [0, 1) \subset \mathbb{R}^{2}$ with the metric $d''(x, y) = \min \left \{ 1, d(x, y) \right \}$.

asked
Dec 21, 2015
in Linear Algebra
makhdoom ghaya
228 views