# Recent questions tagged trapezoidal-rule 1 vote
1
If the trapezoidal method is used to evaluate the integral obtained $\int_{0}^{1} x^2dx$, then the value obtained is always > (1/3) is always < (1/3) is always = (1/3) may be greater or lesser than (1/3)
2
The trapezoidal method is used to evaluate the numerical value of $\int_{0}^{1}e^x dx$. Consider the following values for the step size h. 10-2 10-3 10-4 10-5 For which of these values of the step size h, is the computed value guaranteed to be correct to seven decimal places. Assume that there are no round-off errors in the computation. iv only iii and iv only ii, iii and iv only i, ii, iii and iv
3
Is the value obtained by trapezoidal rule greater than the exact value and also compare the value obtained in the case of simpsons rule.
4
The trapezoidal method to numerically obtain $\int_a^b f(x) dx$ has an error E bounded by $\frac{b-a}{12} h^2 \max f&rsquo;&rsquo;(x), x \in [a, b]$ where $h$ is the width of the trapezoids. The minimum number of trapezoids guaranteed to ensure $E \leq 10^{-4}$ in computing $\ln 7$ using $f=\frac{1}{x}$ is 60 100 600 10000
5
With respect to the numerical evaluation of the definite integral, $K = \int \limits_a^b \:x^2 \:dx$, where $a$ and $b$ are given, which of the following statements is/are TRUE? The value of $K$ obtained using the trapezoidal rule is always greater than or equal ... using the Simpson's rule is always equal to the exact value of the definite integral. I only II only Both I and II Neither I nor II
Function $f$ is known at the following points: $x$ 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 $f(x)$ 0 0.09 0.36 0.81 1.44 2.25 3.24 4.41 5.76 7.29 9.00 The value of $\int_{0}^{3} f(x) \text{d}x$ computed using the trapezoidal rule is (A) 8.983 (B) 9.003 (C) 9.017 (D) 9.045
The minimum number of equal length subintervals needed to approximate $\int_1^2 xe^x\,dx$ to an accuracy of at least $\frac{1}{3}\times10^{-6}$ using the trapezoidal rule is 1000e 1000 100e 100