GATE2019-25

Consider a sequence of $14$ elements: $A=[-5, -10, 6, 3, -1, -2, 13, 4, -9, -1, 4, 12, -3, 0]$. The sequence sum $S(i,j) = \Sigma_{k=i}^j A[k]$. Determine the maximum of $S(i,j)$, where $0 \leq i \leq j <14$. (Divide and conquer approach may be used.) Answer: ___________
Consider a sequence of $14$ elements: $A=[-5, -10, 6, 3, -1, -2, 13, 4, -9, -1, 4, 12, -3, 0]$. The sequence sum $S(i,j) = \Sigma_{k=i}^j A[k]$. Determine the maximum of $S(i,j)$, where $0 \leq i \leq j <14$. (Divide and conquer approach may be used.) Answer: ___________

answered
Jul 4, 2019
in Algorithms
5.4k views