First time here? Checkout the FAQ!
+2 votes

Choose the correct alternatives (More than one may be correct).

Indicate which of the following well-formed formulae are valid:

  1. $\left(P\Rightarrow Q\right) {\wedge} \left(Q \Rightarrow R\right) \Rightarrow \left(P \Rightarrow R\right)$
  2. $\left(P\Rightarrow Q\right) \Rightarrow \left( \neg P \Rightarrow \neg Q\right)$
  3. $\left(P{\wedge} \left(\neg P \vee  \neg Q\right)\right) \Rightarrow Q$
  4. $\left(P \Rightarrow R\right) \vee \left(Q \Rightarrow R\right) \Rightarrow \left(\left(P \vee Q \right)  \Rightarrow R\right)$
asked in Mathematical Logic by Veteran (29k points)   | 119 views

A is true it is Hypothetical syllogism.


In classical logic, hypothetical syllogism is a valid argument form which is a syllogism having a conditional statement for one or both of its premises. If I do not wake up, then I cannot go to work. If I cannot go to work, then I will not get paid. Therefore, if I do not wake up, then I will not get paid.



1 Answer

+1 vote
Create a logic table for each of the given formula and check if we are getting true everywhere.
answered by Veteran (14.7k points)  
Top Users Feb 2017
  1. Arjun

    5386 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2240 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,022 answers
22,133 users