GATE CSE
First time here? Checkout the FAQ!
x
+6 votes
948 views

If for non-zero $x, \: af(x) + bf(\frac{1}{x}) = \frac{1}{x} - 25$ where a $a \neq b \text{ then } \int_1^2 f(x)dx$ is

 

  1. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(\ln 2 - 25) + \frac{47b}{2} \end{bmatrix}$
  2. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(2\ln 2 - 25) - \frac{47b}{2} \end{bmatrix}$
  3. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(2\ln 2 - 25) + \frac{47b}{2} \end{bmatrix}$
  4. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(\ln 2 - 25) - \frac{47b}{2} \end{bmatrix}$
asked in Calculus by Veteran (79.1k points)  
edited by | 948 views

In the equation, substitute (1/x) for x, then you get another equation. Now solve the given equation and the obtained equation. You will get f(x). And then integrate. Simple calculations.

Answer: A 

1 Answer

+23 votes
Best answer

$af\left ( x \right )+bf\left ( \frac{1}{x} \right )=\frac{1}{x} -25$ --- $\left ( 1 \right )$


Integrating both sides,

$a\int_{1}^{2}f\left ( x \right )dx+b\int_{1}^{2}f\left ( \frac{1}{x} \right )dx=\left [ \log\left ( x \right )-25x \right ]_{1}^{2}=\log2-25$ --- $\left ( 2 \right )$


Replacing  $x$ by $\frac{1}{x}$ in $\left ( 1 \right )$, we get

$af\left ( \frac{1}{x} \right )+bf\left ( x \right )=x-25$

Integrating both sides, we get

$a\int_{1}^{2}f\left ( \frac{1}{x} \right )dx+b\int_{1}^{2}f\left ( x \right )dx=\left [ \frac{x^{2}}{2}-25x \right ]_{1}^{2}=-\frac{47}{2}$ --- $\left ( 3 \right )$


Eliminate $\int_{1}^{2}f\left ( \frac{1}{x} \right )$ between $\left ( 2 \right )$ and $\left ( 3 \right )$ by multiplying $\left ( 2 \right )$ by $a$ and $\left ( 3 \right )$ by $b$ and subtracting

$\therefore \left ( a^{2}-b^{2} \right )\int_{1}^{2}f\left ( x \right )dx=a\left ( \log2-25 \right )+b\times\frac{47}{2}$

$\therefore \int_{1}^{2}f\left ( x \right )dx=\frac{1}{\left ( a^{2}-b^{2} \right )}\left [ a\left ( \log2-25 \right )+\frac{47b}{2} \right ]$


Answer: A. $\frac{1}{\left ( a^{2}-b^{2} \right )}\left [ a\left ( \log2-25 \right )+\frac{47b}{2} \right ]$

answered by Active (1.5k points)  
selected by


Top Users Aug 2017
  1. ABKUNDAN

    4660 Points

  2. Bikram

    4366 Points

  3. akash.dinkar12

    3258 Points

  4. rahul sharma 5

    3042 Points

  5. manu00x

    2682 Points

  6. makhdoom ghaya

    2410 Points

  7. just_bhavana

    2100 Points

  8. Tesla!

    1918 Points

  9. stblue

    1682 Points

  10. joshi_nitish

    1608 Points


24,928 questions
32,024 answers
74,385 comments
30,113 users