retagged by
511 views

3 Answers

Best answer
1 votes
1 votes
Answer = ab

Let $y = \lim_{ x \to 0} \left({\frac {a^x+b^x}{2}}\right)^{\frac{1}{x}}$

taking log on both sides

$\log y = \lim_{ x \to 0}\log \left( {\frac {a^x+b^x}{2}}\right)^{\frac{1}{x}}$

$= \lim_{ x \to 0} \frac{\log \frac {a^x+b^x}{2}} {x}$

This is of the form $\frac{0}{0}$ and so applying L'Hôpital's rule

$\log y = \lim_{x \to 0} \frac {1}{a^x+b^x} . \left(a^x\log a+b^x \log b \right)$

$=\frac{1}{2} . \left( \log a+ \log b \right)$

$=\log \sqrt {ab}$

So, $y= \sqrt{ab}$.
selected by
3 votes
3 votes

$\lim_{x\rightarrow 0}((a^{x}+b^{x})/2)^{1/x}$   gives $1^{\infty }$    form so we apply standard form

$e^{\lim_{x\rightarrow 0}((f(x)-1)*(g(x)))}$       

here in this question f(x) =$((a^{x}+b^{x})/2)$      and   g(x)=1/x

so we apply standard form $e^{\lim_{x\rightarrow 0}((a^{x}+b^{x})/2)-1)*1/x}$ 

now we calculate  for$lim_{x\rightarrow 0}((a^{x}+b^{x})/2)-1)*1/x$ which is 0/0 form now we apply l hospital rule that gives

(ax lna+bxlnb)/2  =1/2*(lnab)=ln (ab)1/2

$\therefore e^{ln_{e}\sqrt{ab}}=\sqrt{ab}$

Related questions

1 votes
1 votes
3 answers
1
Salman asked Aug 1, 2015
927 views
$$\lim_{x \to 0} \frac{\cos(x)-\log(1+x)-1+x}{\sin^2x} = ? $$Please explain the steps also
1 votes
1 votes
1 answer
2
saket nandan asked Jul 10, 2015
417 views
$\lim_{x\rightarrow 0}\frac{ \sin x^{\circ}}{x}$
0 votes
0 votes
1 answer
3
saket nandan asked Jul 10, 2015
389 views
$\lim_{x\rightarrow 0} \left( \frac{1}{x^{2}} -\frac{1}{\sin^{2}x} \right)$
0 votes
0 votes
2 answers
4
saket nandan asked Jul 10, 2015
809 views
$\lim_{\theta \rightarrow 0} \frac{ 1-\cos \theta }{ \theta \sin\theta }$