GATE CSE
First time here? Checkout the FAQ!
x
0 votes
55 views
  1. The following table gives the cost of transporting one tonne of goods from the origins A, B, C to the destinations F, G, H. Also shown are the availabilities of the goods at the origins and the requirements at the destinations. 

    The transportation problem implied by this table can also be written in the form

    $$\text{minimize} \: \: \underline{c} \: ^T \: \underline{x}$$

    $$\text{subject to :}  \: \: Ax= \underline{b}$$

    $$ \underline{x} \geq 0$$

    Display $\underline{c} \: ^T , A$ and $\underline{b}$ if $\underline{x}$ is the vector

    (XAF, XAG, XAH, XAH, XBF, XBG, XBH, XCF, XCG, XCH)

    Where $x_{ij}$ represents the shipment from $i$ to $j$.
  2. Given that XAG, XBH, XCF, XC are the variable in the basis, solve for the values of these variables in the above question(i).

  3. For the solution of (ii) above, calculate the values of the duals and determine whether this is an optimal solution.

asked in Others by Veteran (79.1k points)   | 55 views

Please log in or register to answer this question.



Top Users Aug 2017
  1. Bikram

    4892 Points

  2. ABKUNDAN

    4704 Points

  3. akash.dinkar12

    3480 Points

  4. rahul sharma 5

    3158 Points

  5. manu00x

    3012 Points

  6. makhdoom ghaya

    2470 Points

  7. just_bhavana

    2382 Points

  8. stblue

    2130 Points

  9. Tesla!

    2066 Points

  10. joshi_nitish

    1758 Points


25,009 questions
32,131 answers
74,800 comments
30,179 users