GATE CSE
First time here? Checkout the FAQ!
x
0 votes
50 views
  1. The following table gives the cost of transporting one tonne of goods from the origins A, B, C to the destinations F, G, H. Also shown are the availabilities of the goods at the origins and the requirements at the destinations. 

    The transportation problem implied by this table can also be written in the form

    $$\text{minimize} \: \: \underline{c} \: ^T \: \underline{x}$$

    $$\text{subject to :}  \: \: Ax= \underline{b}$$

    $$ \underline{x} \geq 0$$

    Display $\underline{c} \: ^T , A$ and $\underline{b}$ if $\underline{x}$ is the vector

    (XAF, XAG, XAH, XAH, XBF, XBG, XBH, XCF, XCG, XCH)

    Where $x_{ij}$ represents the shipment from $i$ to $j$.
  2. Given that XAG, XBH, XCF, XC are the variable in the basis, solve for the values of these variables in the above question(i).

  3. For the solution of (ii) above, calculate the values of the duals and determine whether this is an optimal solution.

asked in Others by Veteran (77.8k points)   | 50 views

Please log in or register to answer this question.



Top Users Jun 2017
  1. Bikram

    3704 Points

  2. Arnab Bhadra

    1502 Points

  3. Hemant Parihar

    1502 Points

  4. Niraj Singh 2

    1481 Points

  5. junaid ahmad

    1432 Points

  6. Debashish Deka

    1402 Points

  7. Rupendra Choudhary

    1230 Points

  8. rahul sharma 5

    1222 Points

  9. Arjun

    1168 Points

  10. pawan kumarln

    1164 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 26 - Jul 02
  1. pawan kumarln

    296 Points

  2. akankshadewangan24

    214 Points

  3. Arjun

    208 Points

  4. Debashish Deka

    156 Points

  5. Hira Thakur

    130 Points


23,414 questions
30,125 answers
67,509 comments
28,443 users