GATE CSE
First time here? Checkout the FAQ!
x
0 votes
46 views
  1. The following table gives the cost of transporting one tonne of goods from the origins A, B, C to the destinations F, G, H. Also shown are the availabilities of the goods at the origins and the requirements at the destinations. 

    The transportation problem implied by this table can also be written in the form

    $$\text{minimize} \: \: \underline{c} \: ^T \: \underline{x}$$

    $$\text{subject to :}  \: \: Ax= \underline{b}$$

    $$ \underline{x} \geq 0$$

    Display $\underline{c} \: ^T , A$ and $\underline{b}$ if $\underline{x}$ is the vector

    (XAF, XAG, XAH, XAH, XBF, XBG, XBH, XCF, XCG, XCH)

    Where $x_{ij}$ represents the shipment from $i$ to $j$.
  2. Given that XAG, XBH, XCF, XC are the variable in the basis, solve for the values of these variables in the above question(i).

  3. For the solution of (ii) above, calculate the values of the duals and determine whether this is an optimal solution.

asked in Others by Veteran (77.2k points)   | 46 views

Please log in or register to answer this question.



Top Users May 2017
  1. akash.dinkar12

    3154 Points

  2. pawan kumarln

    1636 Points

  3. sh!va

    1600 Points

  4. Arjun

    1360 Points

  5. Bikram

    1322 Points

  6. Devshree Dubey

    1262 Points

  7. Debashish Deka

    1132 Points

  8. Angkit

    1044 Points

  9. LeenSharma

    900 Points

  10. srestha

    710 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    408 Points

  2. pawan kumarln

    262 Points

  3. Ahwan

    236 Points

  4. Arnab Bhadra

    234 Points

  5. LeenSharma

    138 Points


22,772 questions
29,098 answers
65,132 comments
27,639 users