GATE CSE
First time here? Checkout the FAQ!
x
0 votes
126 views
Express $T(n)$ in terms of the harmonic number $H_{n}= \sum_{t=1}^{n} 1/i, n \geq 1$, where $T(n)$ satisfies the recurrence relation,

$T(n)=\frac{n+1}{n} T(n - 1)+1$, for $n \geq \sum$ and $T(1) = 1$

What is the asymptotic behaviour of $T(n)$ as a function of $n$?
closed as a duplicate of: GATE1990-17a
asked in Algorithms by Veteran (30.4k points)  
closed by | 126 views

1 Answer

+2 votes

T(n) = $\frac{n+1}{n}$T(n-1) + 1 --------------------------------------------------(1)

T(n-1) = $\frac{n}{n-1}$T(n-2) + 1----------------------------------------------------(2)

T(n-2) = $\frac{n-1}{n-2}$T(n-3) + 1-----------------------------------------------(3)

substituting value of T(n-1) from eqn (2) in eqn (1)

T(n) = $\frac{n+1}{n}$*$\frac{n}{n-1}$T(n-2) + $\frac{n+1}{n}$ + 1

T(n) = $\frac{n+1}{n-1}$T(n-2) + $\frac{n+1}{n}$ + 1

now substituting value of T(n-2) in above eqn

T(n) =  $\frac{n+1}{n-1}$* $\frac{n-1}{n-2}$T(n-3) +  $\frac{n+1}{n-1}$ + $\frac{n+1}{n}$ + 1

T(n) =  $\frac{n+1}{n-2}$T(n-3) +  $\frac{n+1}{n-1}$ + $\frac{n+1}{n}$ + 1

.

.

.

.

so on

T(n) = $\frac{n+1}{n-k+1}$T(n-k) + $\frac{n+1}{n}$ + $\frac{n+1}{n-1}$ + ...... + $\frac{n+1}{n-k+2}$ + 1

T(n) = $\frac{n+1}{n-k+1}$T(n-k) + (n+1)*( $\frac{1}{n}$ + $\frac{1}{n-1}$ +.....+ $\frac{1}{n-k+2}$) + 1

now let n-k=1 so k = n-1, substitute value of k in above eqn

T(n) = $\frac{n+1}{n-(n-1)+1}$T(1) + (n+1)*( $\frac{1}{n}$ + $\frac{1}{n-1}$ +.....+ $\frac{1}{n-(n-1)+2}$) + 1

T(n) = $\frac{n+1}{2}$ + (n+1)*( $\frac{1}{n}$ + $\frac{1}{n-1}$ +.....+ $\frac{1}{3}$) + 1

T(n) = $\frac{n+1}{2}$ + (n+1)*(Hn - $\frac{1}{2}$ - 1) + 1

T(n) = $\frac{n+1}{2}$ + (n+1)*Hn - $\frac{n+1}{2}$ - (n+1) + 1

T(n) = (n+1)*Hn - n

Now Hn≈logn+γ

where γ is the Euler-Mascheroni constant. 

T(n) = O(nlogn)

answered by Boss (7.8k points)  
edited by


Top Users Jul 2017
  1. Bikram

    5784 Points

  2. manu00x

    3602 Points

  3. Arjun

    1988 Points

  4. Debashish Deka

    1924 Points

  5. joshi_nitish

    1908 Points

  6. pawan kumarln

    1680 Points

  7. Tesla!

    1426 Points

  8. Hemant Parihar

    1334 Points

  9. Shubhanshu

    1180 Points

  10. Arnab Bhadra

    1124 Points


24,169 questions
31,186 answers
71,038 comments
29,512 users