GATE CSE
First time here? Checkout the FAQ!
x
0 votes
88 views
Express $T(n)$ in terms of the harmonic number $H_{n}= \sum_{t=1}^{n} 1/i, n \geq 1$, where $T(n)$ satisfies the recurrence relation,

$T(n)=\frac{n+1}{n} T(n - 1)+1$, for $n \geq \sum$ and $T(1) = 1$

What is the asymptotic behaviour of $T(n)$ as a function of $n$?
closed as a duplicate of: GATE1990-17a
asked in Algorithms by Veteran (29.1k points)  
closed by | 88 views

1 Answer

+2 votes

T(n) = $\frac{n+1}{n}$T(n-1) + 1 --------------------------------------------------(1)

T(n-1) = $\frac{n}{n-1}$T(n-2) + 1----------------------------------------------------(2)

T(n-2) = $\frac{n-1}{n-2}$T(n-3) + 1-----------------------------------------------(3)

substituting value of T(n-1) from eqn (2) in eqn (1)

T(n) = $\frac{n+1}{n}$*$\frac{n}{n-1}$T(n-2) + $\frac{n+1}{n}$ + 1

T(n) = $\frac{n+1}{n-1}$T(n-2) + $\frac{n+1}{n}$ + 1

now substituting value of T(n-2) in above eqn

T(n) =  $\frac{n+1}{n-1}$* $\frac{n-1}{n-2}$T(n-3) +  $\frac{n+1}{n-1}$ + $\frac{n+1}{n}$ + 1

T(n) =  $\frac{n+1}{n-2}$T(n-3) +  $\frac{n+1}{n-1}$ + $\frac{n+1}{n}$ + 1

.

.

.

.

so on

T(n) = $\frac{n+1}{n-k+1}$T(n-k) + $\frac{n+1}{n}$ + $\frac{n+1}{n-1}$ + ...... + $\frac{n+1}{n-k+2}$ + 1

T(n) = $\frac{n+1}{n-k+1}$T(n-k) + (n+1)*( $\frac{1}{n}$ + $\frac{1}{n-1}$ +.....+ $\frac{1}{n-k+2}$) + 1

now let n-k=1 so k = n-1, substitute value of k in above eqn

T(n) = $\frac{n+1}{n-(n-1)+1}$T(1) + (n+1)*( $\frac{1}{n}$ + $\frac{1}{n-1}$ +.....+ $\frac{1}{n-(n-1)+2}$) + 1

T(n) = $\frac{n+1}{2}$ + (n+1)*( $\frac{1}{n}$ + $\frac{1}{n-1}$ +.....+ $\frac{1}{3}$) + 1

T(n) = $\frac{n+1}{2}$ + (n+1)*(Hn - $\frac{1}{2}$ - 1) + 1

T(n) = $\frac{n+1}{2}$ + (n+1)*Hn - $\frac{n+1}{2}$ - (n+1) + 1

T(n) = (n+1)*Hn - n

Now Hn≈logn+γ

where γ is the Euler-Mascheroni constant. 

T(n) = O(nlogn)

answered by Boss (7.7k points)  
edited by


Top Users Mar 2017
  1. rude

    4018 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2606 Points

  5. Debashish Deka

    2088 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1312 Points

  8. Bikram

    1218 Points

  9. Akriti sood

    1166 Points

  10. Sanjay Sharma

    984 Points

Monthly Topper: Rs. 500 gift card

21,438 questions
26,753 answers
60,913 comments
22,926 users