The pre-order traversal of a binary search tree is given by $12, 8, 6, 2, 7, 9, 10, 16, 15, 19, 17, 20$. Then the post-order traversal of this tree is
ans is B
Preoder: $\enclose {circle}{12}\quad \enclose {circle}{8} \quad 6\quad 2\quad 7\quad 9\quad 10\quad 16\quad 15\quad 19\quad 17\quad 20$
Inorder of BST must be sorted in increasing order!
Inorder: $\underbrace{\overbrace{2\quad 6 \quad 7}^{\text{left}}\quad \overset{\text{root}}{\enclose {circle}{8}}\quad \overbrace{9\quad 10}^{\text{right}}}_{\text{left}}\quad \overset{\text{root}}{\enclose {circle}{12}}\quad \underbrace{15\quad 16\quad 17\quad 19\quad 20}_{\text{right}}$
So, Postorder: $2 \quad 7 \quad 6 \quad10\quad9\quad8\quad15\quad17\quad20\quad19\quad16\quad12.$
Answer is B.
many questions asked on this model