retagged by
457 views
1 votes
1 votes

$\left ( G, . \right )$ is a group such that $\left ( x,y \right )^{-1} = x^{-1}y^{-1}, \forall \left ( x,y \right ) \in G$.
Here, $G$ is a:

  1.  Monoid
  2.  Commutative semi group
  3.  Abelian group
  4.  Semi group
retagged by

1 Answer

Best answer
3 votes
3 votes

In a group $\left ( G , . \right )$ is said to be abelian if  $\left ( a\ast b \right ) = \left ( b\ast a \right ) a,b $∀$\epsilon G$

one of the well known property for inverse is given below:

 (ab)-1 = (b-1a-1)............$(1)$

Given ,$\left ( a,b \right )^{-1}$ $=$ $a^{-1}b^{-1}$     

from $(1)$ and $(2)$ we can write 

$a^{-1}b^{-1}$  = $b^{-1}a^{-1}$     

One more property of groups: "In a group (G, *) if inverse(x) = x   for all x ϵ G then G is abelian group "

$a.b=b.a$

Hence, Option (C) Abelian Group 

edited by
Answer:

Related questions

0 votes
0 votes
1 answer
4