ISI2015-DCG-59

53 views

If in a $\Delta ABC$, $\angle B = \frac{2 \pi}{3}$, then $\cos A + \cos C$ lies in

1. $[\:- \sqrt{3}, \sqrt{3}\:]$
2. $(\: β \sqrt{3}, \sqrt{3}\:]$
3. $(\:\frac{3}{2}, \sqrt{3}\:)$
4. $(\:\frac{3}{2}, \sqrt{3}\:]$

recategorized
0
which is the right option?

1 vote

Answer: $\mathbf A$

We have:

$\mathrm {\angle A + \angle B + \angle C } = \pi \;\text{(By angle sum property of$\Delta$)}$

$\Rightarrow \mathrm{\angle A + \dfrac{2\pi}{3} + \angle C}=\dfrac{\pi}{3}$

Now, We know that:
$\mathrm{\cos A + \cos C = 2\cos\frac{A+C}{2}.\cos\frac{A-C}{2}}$

$\Rightarrow \mathrm{\cos A + \cos C = 2\cos\frac{\pi}{6}.\cos\frac{A-C}{2}} = 2\times \frac{\sqrt3}{2}\cos\frac{A-C}{2} = \sqrt3\cos\frac{A-C}{2}$

$\Rightarrow \mathrm{\cos A + \cos C=\sqrt3\cos\frac{A-C}{2}}$

We know that:

$-1 \le\cos \theta \le1, \;\forall \theta$

$\mathrm{\Rightarrow -1\le \cos\big (\frac{A-C}{2} \big )\le1}$

$\mathrm{\Rightarrow -\sqrt3\le \sqrt 3\cos\big (\frac{A-C}{2} \big )\le \sqrt3}$

$\Rightarrow \text {Range} = [-\sqrt3, \;\sqrt3]$

$\therefore \mathbf A$ is the right answer.

edited by
0
Superb solution. π
1

But a mistake in the line

It will be $\displaystyle \therefore -1\le \cos \left(\frac{\mathrm{A}-\mathrm{C}}{2}\right) \le1$

And in this line $\sqrt{3} \cos \left(\frac{\mathrm{A}-\mathrm{C}}{2}\right)$ is missing.

0
Yes :D

Thanks.
1
Corrected!

Related questions

1
87 views
The equations $x=a \cos \theta + b \sin \theta$ and $y=a \sin \theta + b \cos \theta$, $( 0 \leq \theta \leq 2 \pi$ and $a,b$ are arbitrary constants) represent a circle a parabola an ellipse a hyperbola
If $\tan x=p+1$ and $\tan y=p-1$, then the value of $2 \cot (x-y)$ is $2p$ $p^2$ $(p+1)(p-1)$ $\frac{2p}{p^2-1}$
The value of $\sin^6 \frac{\pi}{81} + \cos^6 \frac{\pi}{81}-1+3 \sin ^2 \frac{\pi}{81} \cos^2 \frac{\pi}{81}$ is $\tan ^6 \frac{\pi}{81}$ $0$ $-1$ None of these
The number of values of $x$ for which the equation $\cos x = \sqrt{\sin x} β \dfrac{1}{\sqrt{\sin x}}$ is satisfied, is $1$ $2$ $3$ more than $3$