edited by
2,939 views
20 votes
20 votes

Let $\text{S} =\displaystyle \sum_{i=1}^n f(x_i), \text{A}=\displaystyle\sum_{i=1}^{a} f(x_i)$ and $\text{B}=\displaystyle \sum_{i=a}^n f(x_i)$ then
Which of the following is/are ALWAYS true?

(Consider f as some arbitary function)

  1. $\text{S = A + B}$
  2. $\text{S}=\displaystyle \sum_{i=1}^{a-1} f(x_i)+f(x_a)+ \text{B}$
  3. $\text{S}=\displaystyle \sum_{i=1}^{a-1} f(x_i)+ \text{B}$
  4. $\text{S = A + B}-f(x_a)$
edited by

9 Answers

0 votes
0 votes

If you simply visualize this question in the following way, it becomes very easy.

S = 1+2+3+...+n

A = 1+2+3+...+a

B = a+...+n

Now option (a), A + B = (1+2+3+...+a) + (a+...+n) ,so you see a gets counted twice thus this option is wrong.

Now option (b), = (1+2+3+...+a-1) + a + (a+...+n) ,here also a gets counted twice so this one is wrong too.

Now option (c), =  (1+2+3+...+a-1) + (a+...+n) ,this one is a continuous series hence it's correct.

Now option (d), A + B – f(a) = (1+2+3+...+a) + (a+...+n) – a ,this is correct as the extra a is subtracted.

 

Hence correct options are (c) and (d)

0 votes
0 votes

${S}$=$\sum_{i=1}^{n}$  ${f(x}$$_{i}$${)}$ = ${f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a}$${)+}$${….+}$${f(x}$$_{n}$${)}$

${A}$=$\sum_{i=1}^{a}$  ${f(x}$$_{i}$${)}$ = ${f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a}$${)}$

${B}$=$\sum_{i=a}^{n}$  ${f(x}$$_{i}$${)}$ = ${f(x}$$_{a}$${)}$${+}$${f(x}$$_{a+1}$${)}$${+}$${… +f(x}$$_{n}$${)}$

now let see options

  1.  ${S=A+B}$

     ${A+B=}$  ${f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a}$${)+}$ ${f(x}$$_{a}$${)}$${+}$${f(x}$$_{a+1}$${)}$${+}$${… +f(x}$$_{n}$${)}$ 
                   ${=f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a}$${)+}$${….+}$${f(x}$$_{n}$${)}$${+f(x}$$_{a}$${)}$
                   ${=f(x}$$_{1}$${)}$${+S}$

    hence false
     
  2.   ${S=}$$\sum_{i=1}^{a-1}$  ${f(x}$$_{i}$${)}$${+}$${f(x}$$_{a}$${)}$${+B}$

    ${R.H.S =}$$\sum_{i=1}^{a-1}$  ${f(x}$$_{i}$${)}$${+}$${f(x}$$_{a}$${)}$${+B}$
                    ${=f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a-1}$${)+}$${f(x}$$_{a}$${)+}$${B}$
                    ${=A+B}$

    Since ${S}$$\neq$${A+B}$

    Hence False.
  3. ${S=}$$\sum_{i=1}^{a-1}$  ${f(x}$$_{i}$${)}$${+}$${B}$

     ${R.H.S =}$$\sum_{i=1}^{a-1}$  ${f(x}$$_{i}$${)}$${+}$${B}$
                     ${=f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a-1}$${)+}$${f(x}$$_{a}$${)}$${+}$${f(x}$$_{a+1}$${)}$${+}$${… +f(x}$$_{n}$${)=S}$

    Hence  ${S=}$$\sum_{i=1}^{a-1}$  ${f(x}$$_{i}$${)}$${+}$${B}$  True
     
  4.  ${S=A+B}$${-f(x}$$_{a}$${)}$

      ${R.H.S =}$${A+B}$${-f(x}$$_{a}$${)}$
                      ${=f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a}$${)+}$ ${f(x}$$_{a}$${)}$${+}$${f(x}$$_{a+1}$${)}$${+}$${… +f(x}$$_{n}$${)}$${-f(x}$$_{a}$${)}$
                     ${=f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a}$${)+}$${….+}$${f(x}$$_{n}$${)}$${+f(x}$$_{a}$${)}$${-f(x}$$_{a}$${)}$
                    ${=f(x}$$_{1}$${)}$${+}$${f(x}$$_{2}$${)}$${+}$${… +f(x}$$_{a}$${)+}$${….+}$${f(x}$$_{n}$${)=S}$

    Hence ${S=A+B}$${-f(x}$$_{a}$${)}$ True

${Hence}$  ${ans : C,D}$

Answer:

Related questions

18 votes
18 votes
3 answers
4