search
Log In
1 vote
123 views

in Algorithms 123 views

1 Answer

4 votes
 
Best answer

We can analyze these functions by performing Log on both sides of the equeations. ( a relative comparision when n->$\infty$ )

1. $\log f_{1} = \log (n!) = O(n\log n)$

2. $\log f_{2} = \log (2n^{2}+n\log n) = O(\log n)$

3. $\log f_{3} = \log (n^{2^{n}} + 6*2^{n}) = O(2^{n}\log n)$

comparing all these we find that $f_{3}$ is the biggest function. and $f_{2}$ is the smallest.
or $f_{2} < f_{1} < f_{3}$
=> (A) is False.


selected by
0
PS: this log comparision does not always work . we have to be little careful while applying this.

Related questions

1 vote
0 answers
1
119 views
Time complexity of Prim's algorithm for computing minimum cost spanning tree for a complete graph with n vertices and e edges using Heap data structure is- 1. (n+e)*log^2n 2. n^2 3. n^2*logn 4. n*logn
asked Jan 29, 2019 in Algorithms Psnjit 119 views
0 votes
3 answers
2
0 votes
0 answers
3
252 views asked Jan 23, 2019 in Algorithms Shankar Kakde 252 views
–1 vote
1 answer
4
102 views asked Jan 14, 2019 in Algorithms Shankar Kakde 102 views
...