To solve this question we have to look at two things: 1) In a binary tree, a node may have at most 2 children. 2) To construct binary tree from the given sequences above, innermost parenthesis should be worked first.
In Option A : ( 4 5 6 7 ) is there, which says that node 4 has got three children, which is wrong for a binary tree, and also in the question, only ( X Y Z ) is defined, i.e. a node X can have at most 2 children, which will be the roots of subtrees Y and Z.
In Option B : after working on innermost (2 3 4), where 2 is a node of the binary tree, 3 is left subtree of node 2 and 4 is right subtree of node 2. From this we get (1 2 5 6). Here 2 has come from the root of subtree ( 2 3 4 ). Now again we don't have any definition for ( 1 2 5 6). Hence invalid.
In Option C: after working on ( 2 3 4) and ( 5 6 7 ) we get ( 1 2 5 ) where 2 has come from the root of subtree ( 2 3 4 ) and 5 has come from the root of subtree ( 5 6 7 ). Now, in ( 1 2 5 ) node 1 is the root of the binary tree, and subtree with root 2 is the left subtree and subtree with root 5 is the right subtree at root node 1. Hence it is giving valid binary tree.
In Option D: It is given as ( 2 3 NULL), here N,U,L and L are given as different elements, which is again wrong as according to ( X Y Z) definition, a node can have at most 2 children.
Source :geeksforgeeks