search
Log In

Recent questions tagged combinatory

4 votes
5 answers
1
Let $S$ be a set of consisting of $10$ elements. The number of tuples of the form $(A,B)$ such that $A$ and $B$ are subsets of $S$, and $A \subseteq B$ is ___________
asked Feb 18 in Combinatory Arjun 757 views
3 votes
1 answer
2
There are $6$ jobs with distinct difficulty levels, and $3$ computers with distinct processing speeds. Each job is assigned to a computer such that: The fastest computer gets the toughest job and the slowest computer gets the easiest job. Every computer gets at least one job. The number of ways in which this can be done is ___________.
asked Feb 18 in Combinatory Arjun 824 views
0 votes
0 answers
3
A permutation $\sigma$ is a bijection from the set $[n]=\{1,2,\dots ,n\}$ to itself. We denote it using the notation $\begin{pmatrix}1 & 2 & & n \\ {\sigma(1)} & {\sigma(2)} &\dots & {\sigma(n)} \end{pmatrix},$ e.g. if $n=3$ ... $\sigma =\begin{pmatrix} 1 & 2 & 3&4&5&6 \\ 2& 3&4&5&1&6 \end{pmatrix}, \; \tau=\begin{pmatrix} 1 & 2 & 3&4&5&6 \\ 4& 1&3&2&6&5 \end{pmatrix}$
asked Jan 29 in Others soujanyareddy13 19 views
0 votes
0 answers
4
A permutation $\sigma$ is a bijection from the set $[n]=\{1,2, ,n\}$ to itself. We denote it using the notation $\begin{pmatrix}1 & 2 & & n \\ {\sigma(1)} & {\sigma(2)} & & {\sigma(n)} \end{pmatrix},$ ... $|A_{\sigma} |$ and $|A_\tau|?$ Can you relate these with the signs of permutations $\sigma$ and $\tau ?$
asked Jan 29 in Others soujanyareddy13 14 views
1 vote
2 answers
5
What is the total number of ways to reach from $A$ to $B$ in the network given? $12$ $16$ $20$ $22$
asked Dec 8, 2020 in Quantitative Aptitude gatecse 290 views
2 votes
2 answers
6
How many ways are there to pack six copies of the same book into four identical boxes, where a box can contain as many as six books? $4$ $6$ $7$ $9$
asked Nov 20, 2020 in Combinatory jothee 471 views
...