# Ullman (TOC) Edition 3 Exercise 9.3 Question 5 (Page No. 400)

29 views
Let $L$ be the language consisting of pairs of $TM$ codes plus an integer, $(M_{1},M_{2},k)$, such that $L(M_{1})\cap L(M_{2})$ contains at least $k$ strings. Show that $L$ is $RE$, but recursive.

## Related questions

1
37 views
Show that the following problems are not recursively enumerable: The set of pairs $(M,w)$ such that $TM \ M$, started with input $w$, does not halt. The set of pairs $(M_{1},M_{2})$ such that $L(M_{1}\cap L_(M_{2})=\phi$. The set of triples $(M_{1},M_{2},M_{3})$ such that $L(M_{1}) = L(M_{2})L(M_{3})$ ; i.e., the language of the first is the concatenation of the languages of the two $TM's$.
Tell whether each of the following are recursive, RE-but-not-recursive, or non-RE. The set of all $TM$ codes for $TM's$ that halt on every input. The set of all $TM$ codes for $TM’s$ that halt on no input. The set of all $TM$ codes for $TM's$ that halt on at least one input. The set of all $TM$ codes for $TM's$ that fail to halt on at least one input.
Informally describe multitape Turing machines that enumerate the following sets of integers, in the sense that started with blank tapes, it prints on one of its tapes $10^{i_{1}}10^{i_{2}}1\cdot\cdot\cdot$ ... be simulated for at least $s$ steps, then we shall eventually discover each $M_{i}$ that accepts $w_{i}$ and enumerate $i$.
Show that the following questions are decidable: The set of codes for $TM's \ M$ such that when started with blank tape will eventually write some nonblank symbol on its tape. Hint: If $M$ has $m$ states, consider the first $m$ ... . The set of pairs $(M,w)$ such that $TM \ M$, started with input $w$, never scans any tape cell more than once.