edited by
908 views

3 Answers

2 votes
2 votes
To find \( \lim_{{x \to 0}} \frac{\ln((x^2 + 1) \cdot \cos x)}{x^2} \), we can use L'Hôpital's Rule, which states that if \( \lim_{{x \to c}} f(x) = \lim_{{x \to c}} g(x) = 0 \) or \( \pm \infty \), and \( g'(x) \neq 0 \) near \( c \), then:

\[ \lim_{{x \to c}} \frac{f(x)}{g(x)} = \lim_{{x \to c}} \frac{f'(x)}{g'(x)} \]

Let's find the derivatives of the numerator and denominator:

\[ f(x) = \ln((x^2 + 1) \cdot \cos x) \]

\[ f'(x) = \frac{1}{(x^2 + 1) \cdot \cos x} \cdot ((x^2 + 1)' \cdot \cos x + (x^2 + 1) \cdot (\cos x)') \]

\[ = \frac{1}{(x^2 + 1) \cdot \cos x} \cdot (2x \cdot \cos x - (x^2 + 1) \cdot \sin x) \]

\[ g(x) = x^2 \]

\[ g'(x) = 2x \]

Now, let's find \( \lim_{{x \to 0}} \frac{f'(x)}{g'(x)} \):

\[ \lim_{{x \to 0}} \frac{f'(x)}{g'(x)} = \lim_{{x \to 0}} \frac{\frac{1}{(x^2 + 1) \cdot \cos x} \cdot (2x \cdot \cos x - (x^2 + 1) \cdot \sin x)}{2x} \]

\[ = \lim_{{x \to 0}} \frac{2x \cdot \cos x - (x^2 + 1) \cdot \sin x}{2x \cdot (x^2 + 1) \cdot \cos x} \]

Now, we can apply L'Hôpital's Rule again:

\[ = \lim_{{x \to 0}} \frac{2 \cos x - 2x \cdot \sin x - 2x \cdot \sin x - (x^2 + 1) \cdot \cos x}{2 \cdot (x^2 + 1) \cdot \cos x - 4x^2 \cdot \sin x} \]

\[ = \lim_{{x \to 0}} \frac{2 \cos x - 4x \sin x - (x^2 + 1) \cos x}{2 \cos x - 4x^2 \sin x} \]

Now, plugging in \( x = 0 \) directly gives:

\[ = \frac{2 \cos 0 - 4 \cdot 0 \cdot \sin 0 - (0^2 + 1) \cdot \cos 0}{2 \cdot \cos 0 - 4 \cdot 0^2 \cdot \sin 0} \]

\[ = \frac{2 \cdot 1 - 0 - 1 \cdot 1}{2 \cdot 1 - 0} \]

\[ = \frac{2 - 1}{2} \]

\[ = \frac{1}{2} \]
So, \( \lim_{{x \to 0}} \frac{\ln((x^2 + 1) \cdot \cos x)}{x^2} = \frac{1}{2} \) or 0.5 .
0 votes
0 votes

Ans : 1/2

We will apply L'Hopital Rule but little smartly.

ln((x2 + 1) cos(x)) = ln(x2+1) + ln(cos(x)

distribute denominator x2  

ln(x2+1) / x2 + ln(cos(x)/x

now apply L'Hopital seperatly on both the terms 

limx->0 2x / x2+1 . (2x)   +  limx->0  _sin(x) / cos(x) (2x)   

put the limit x=0   [  limx->0  Sin(X) / X = 1 ]

1 _ 1/2  = 1/2

 

 

0 votes
0 votes
Some standard limits and property of logarithms,

 

$1)\lim_{x \to 0} \dfrac{\tan x}{x} = 1$

 

$2)\lim_{x \to 0} \dfrac{\ln (x + 1) }{x} = 1$

 

$3) \ln (ab) = \ln a + \ln b$

 

Given limit , $\lim_{x \to 0} \dfrac{\ln ((x^2 +1) \cos x)}{x^2}$ we can rewrite it as,

 

$\lim_{x \to 0} \left(\dfrac{\ln (x^2 +1)}{x^2} + \dfrac{\ln (\cos x)}{x^2}\right)$

 

now lets evaluate individually,

 

Let $y=x^2$ ,as $x \to 0$ $y \to 0$, for the limit below we can use substitution with $y=x^2$

 

$\lim_{x \to 0}\dfrac{\ln (x^2 +1)}{x^2}$ $=\lim_{y \to 0}\dfrac{\ln (y +1)}{y}$

 

now the limit is in form of the first standard limit which is mentioned above so,

 

 $=\lim_{y \to 0}\dfrac{\ln (y +1)}{y}$$ =1$

 

2) Second limit is,  $\lim_{x \to 0}\dfrac{\ln (\cos x)}{x^2}$  $\left(\dfrac{0}{0} \text{form} \right)$, so apply L'Hopital rule,

 =$\lim_{x \to 0}-\dfrac{\tan x }{2x}$  $= -\dfrac{1}{2}\lim_{x \to 0}\dfrac{\tan x }{x}$

 

 (now its in form of second standard limit mentioned above so,)

 

                      $= -\dfrac{1}{2}\lim_{x \to 0}\dfrac{\tan x }{x}$$= -\dfrac{1}{2}(1)$ $= -\dfrac{1}{2}$

 

as both these limits exists we can use sum rule of limits as,

 

$\lim_{x \to 0} \left(\dfrac{\ln (x^2 +1)}{x^2} + \dfrac{\ln (\cos x)}{x^2}\right)$ $=\lim_{x \to 0}\dfrac{\ln (x^2 +1)}{x^2} + \lim_{x \to 0}\dfrac{\ln (\cos x)}{x^2}$$= 1 - \dfrac{1}{2}$$= \dfrac{1}{2}$.

Related questions

0 votes
0 votes
1 answer
4
Arjun asked Feb 16
723 views
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=\frac{1}{1+e^{-x}}$.The value of the derivative of $f$ at $x$ where $f(x)=0.4$ is $\_\_\_\_\_\_\_$. (roun...