search
Log In

Recent questions tagged engineering-mathematics

0 votes
1 answer
1
If $A$ and $B$ are two related events, and $P(A \mid B)$ represents the conditional probability, Bayes’ theorem states that $P(A\mid B) = \dfrac{P(A)}{P(B)} P(B\mid A)$ $P(A\mid B) = P(A) P(B) P(B\mid A)$ $P(A\mid B) = \dfrac{P(A)}{P(B)}$ $P(A\mid B) = P(A)+P(B)$
asked Apr 2 in Probability Lakshman Patel RJIT 53 views
0 votes
1 answer
2
0 votes
1 answer
3
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
asked Apr 2 in Linear Algebra Lakshman Patel RJIT 43 views
0 votes
1 answer
4
0 votes
1 answer
5
0 votes
0 answers
6
$\displaystyle \lim_{x \rightarrow a}\frac{1}{x^{2}-a^{2}} \displaystyle \int_{a}^{x}\sin (t^{2})dt=$? $2a \sin (a^{2})$ $2a$ $\sin (a^{2})$ None of the above
asked Apr 2 in Calculus Lakshman Patel RJIT 26 views
0 votes
1 answer
7
A ladder $13$ feet long rests against the side of a house. The bottom of the ladder slides away from the house at a rate of $0.5$ ft/s. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is $5$ feet from the house? $\dfrac{5}{24} \text{ ft/s} \\$ $\dfrac{5}{12} \text{ ft/s} \\$ $-\dfrac{5}{24} \text {ft/s} \\$ $-\dfrac{5}{12} \text{ ft/s}$
asked Apr 2 in Calculus Lakshman Patel RJIT 38 views
0 votes
2 answers
8
0 votes
2 answers
9
0 votes
1 answer
12
The function $f\left ( x \right )=\dfrac{x^{2}-1}{x-1}$ at $x=1$ is : Continuous and differentiable Continuous but not differentiable Differentiable but not continuous Neither continuous nor differentiable
asked Mar 31 in Calculus Lakshman Patel RJIT 102 views
1 vote
2 answers
13
1 vote
1 answer
14
If $X, Y$ and $Z$ are three exhaustive and mutually exclusive events related with any experiment and the $P\left(X \right)=0.5P\left(Y \right)$ and $P\left(Z \right)$ = $0.3P\left(Y \right)$. Then $P\left(Y \right)$ = ___________ . $0.54$ $0.66$ $0.33$ $0.44$
asked Mar 31 in Probability Lakshman Patel RJIT 122 views
0 votes
1 answer
18
0 votes
1 answer
20
0 votes
2 answers
22
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
asked Mar 31 in Linear Algebra Lakshman Patel RJIT 150 views
0 votes
2 answers
25
A box contains $10$ screws, $3$ of which are defective. Two screws are drawn at random with replacement. The probability that none of two screws is defective will be $100\%$ $50\%$ $49\%$ None of these.
asked Mar 31 in Probability Lakshman Patel RJIT 195 views
0 votes
1 answer
28
Consider the function $f(x)=\sin(x)$ in the interval $\bigg [​\dfrac{ \pi}{4},\dfrac{7\pi}{4}\bigg ]$. The number and location(s) of the minima of this function are: One, at $\dfrac{\pi}{2} \\$ One, at $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{2}$ and $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{4}$ and $\dfrac{3\pi}{2}$
asked Mar 31 in Calculus Lakshman Patel RJIT 81 views
1 vote
1 answer
29
0 votes
1 answer
30
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$
asked Mar 30 in Linear Algebra Lakshman Patel RJIT 99 views
...