# Recent questions tagged engineering-mathematics 1 vote
1
If $A$ and $B$ are two related events, and $P(A \mid B)$ represents the conditional probability, Bayes’ theorem states that $P(A\mid B) = \dfrac{P(A)}{P(B)} P(B\mid A)$ $P(A\mid B) = P(A) P(B) P(B\mid A)$ $P(A\mid B) = \dfrac{P(A)}{P(B)}$ $P(A\mid B) = P(A)+P(B)$
2
The eigenvalues of the matrix $\begin{bmatrix}1 & 2\\ 4 & 3 \end{bmatrix}$ are $\text{5 and -5}$ $\text{5 and -1}$ $\text{1 and -5}$ $\text{2 and 3}$
3
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
4
$\underset{x \rightarrow 0}{\lim} \dfrac{x^{3}+x^{2}-5x-2}{2x^{3}-7x^{2}+4x+4}=?$ $-0.5$ $(0.5)$ $\infty$ None of the above
5
$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \sin^{7}\theta \cos ^{4} \theta d\theta=?$ $16/1155$ $16/385$ $16\pi/385$ $8\pi/385$
6
$\displaystyle \lim_{x \rightarrow a}\frac{1}{x^{2}-a^{2}} \displaystyle \int_{a}^{x}\sin (t^{2})dt=$? $2a \sin (a^{2})$ $2a$ $\sin (a^{2})$ None of the above
7
A ladder $13$ feet long rests against the side of a house. The bottom of the ladder slides away from the house at a rate of $0.5$ ft/s. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is $5$ feet from the house? $\dfrac{5}{24} \text{ ft/s} \\$ $\dfrac{5}{12} \text{ ft/s} \\$ $-\dfrac{5}{24} \text {ft/s} \\$ $-\dfrac{5}{12} \text{ ft/s}$
8
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiple by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
9
If $P$ is risk probability, $L$ is loss, then Risk Exposure $(RE)$ is computed as. $RE = P/L$ $RE = P + L$ $RE = P \ast L$ $RE = 2 \ast P \ast L$
10
What is the maximum value of the function $f(x) = 2x^{2} – 2x + 6$ in the interval $[0,2]?$ $6$ $10$ $12$ $5,5$
11
The value of the Integral $I = \displaystyle{}\int_{0}^{\pi/2} x^{2}\sin x dx$ is $(x+2)/2$ $2/(\pi-2)$ $\pi – 2$ $\pi + 2$
12
The function $f\left ( x \right )=\dfrac{x^{2}-1}{x-1}$ at $x=1$ is : Continuous and differentiable Continuous but not differentiable Differentiable but not continuous Neither continuous nor differentiable
1 vote
13
If a random coin is tossed $11$ times, then what is the probability that for $7$th toss head appears exactly $4$ times? $5/32$ $15/128$ $35/128$ None of the options
1 vote
14
If $X, Y$ and $Z$ are three exhaustive and mutually exclusive events related with any experiment and the $P\left(X \right)=0.5P\left(Y \right)$ and $P\left(Z \right)$ = $0.3P\left(Y \right)$. Then $P\left(Y \right)$ = ___________ . $0.54$ $0.66$ $0.33$ $0.44$
1 vote
15
A polynomial $p(x)$ is such that $p(0)=5, \: p(1)=4, \: p(2)=9$ and $p(3)=20$. The minimum degree it can have is $1$ $2$ $3$ $4$
16
What is the determinant of the matrix $\begin{bmatrix}5&3&2\\1&2&6\\3&5&10\end{bmatrix}$ $-76$ $-28$ $+28$ $+72$
17
The greatest and the least value of $f(x)=x^4-8x^3+22x^2-24x+1$ in $[0,2]$ are $0,8$ $0,-8$ $1,8$ $1,-8$
18
The system of simultaneous equations $x+2y+z=6\\2x+y+2z=6\\x+y+z=5$ has unique solution. infinite number of solutions. no solution. exactly two solutions.
19
The value of improper integral $\displaystyle\int_{0}^{1} x\ln x =?$ $1/4$ $0$ $-1/4$ $1$
20
Maxima and minimum of the function $f(x)=2x^3-15x^2+36x+10$ occur; respectively at $x=3$ and $x=2$ $x=1$ and $x=3$ $x=2$ and $x=3$ $x=3$ and $x=4$
21
What is the derivative w.r.t $x$ of the function given by $\large \Phi(x)= \displaystyle \int_{0}^{x^2}\sqrt t\:dt$, $2x^2$ $\sqrt x$ $0$ $1$
22
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
23
$\underset{x\to 0}{\lim} \dfrac{(1-\cos x)}{2}$ is equal to $0$ $1$ $1/3$ $1/2$
24
The minimum value of $\mid x^2-5x+2\mid$ is $-5$ $0$ $-1$ $-2$
25
A box contains $10$ screws, $3$ of which are defective. Two screws are drawn at random with replacement. The probability that none of two screws is defective will be $100\%$ $50\%$ $49\%$ None of these.
26
Two eigenvalues of a $3\times3$ real matrix $P$ are $(2+​ \sqrt-1)$ and $3$. The determinant of $P$ is ________. $0$ $1$ $15$ $-1$
1 vote
27
Let $A,B,C,D$ be $n\times n$ matrices, each with non-zero determinant. If $ABCD=1$, then $B^{-1}$ is: $D^{-1}C^{-1}A^{-1}$ $CDA$ $ADC$ Does not necessarily exist.
Consider the function $f(x)=\sin(x)$ in the interval $\bigg [​\dfrac{ \pi}{4},\dfrac{7\pi}{4}\bigg ]$. The number and location(s) of the minima of this function are: One, at $\dfrac{\pi}{2} \\$ One, at $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{2}$ and $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{4}$ and $\dfrac{3\pi}{2}$
The probability that top and bottom cards of a randomly shuffled deck are both aces is: $4/52\times 4/52$ $4/52\times 3/52$ $4/52\times 3/51$ $4/52\times 4/51$
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$