search
Log In

Recent questions tagged calculus

2 votes
2 answers
1
The function $f(x)=x^{5}-5x^{4}+5x^{3}-1$ has one minima and two maxima two minima and one maxima two minima and two maxima one minima and one maxima
asked Apr 2, 2020 in Calculus Lakshman Patel RJIT 118 views
0 votes
1 answer
2
0 votes
1 answer
3
0 votes
0 answers
4
$\displaystyle \lim_{x \rightarrow a}\frac{1}{x^{2}-a^{2}} \displaystyle \int_{a}^{x}\sin (t^{2})dt=$? $2a \sin (a^{2})$ $2a$ $\sin (a^{2})$ None of the above
asked Apr 2, 2020 in Calculus Lakshman Patel RJIT 45 views
0 votes
1 answer
5
$\displaystyle \lim_{x \rightarrow 0}\frac{1}{x^{6}} \displaystyle \int_{0}^{x^{2}}\frac{t^{2}dt}{t^{6}+1}=$? $1/4$ $1/3$ $1/2$ $1$
asked Apr 2, 2020 in Calculus Lakshman Patel RJIT 68 views
0 votes
1 answer
6
A ladder $13$ feet long rests against the side of a house. The bottom of the ladder slides away from the house at a rate of $0.5$ ft/s. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is $5$ feet from the house? $\dfrac{5}{24} \text{ ft/s} \\$ $\dfrac{5}{12} \text{ ft/s} \\$ $-\dfrac{5}{24} \text {ft/s} \\$ $-\dfrac{5}{12} \text{ ft/s}$
asked Apr 2, 2020 in Calculus Lakshman Patel RJIT 72 views
0 votes
1 answer
9
The function $f\left ( x \right )=\dfrac{x^{2}-1}{x-1}$ at $x=1$ is : Continuous and differentiable Continuous but not differentiable Differentiable but not continuous Neither continuous nor differentiable
asked Mar 31, 2020 in Calculus Lakshman Patel RJIT 235 views
0 votes
1 answer
10
0 votes
1 answer
12
0 votes
1 answer
13
0 votes
1 answer
14
0 votes
1 answer
16
Consider the function $f(x)=\sin(x)$ in the interval $\bigg [​\dfrac{ \pi}{4},\dfrac{7\pi}{4}\bigg ]$. The number and location(s) of the minima of this function are: One, at $\dfrac{\pi}{2} \\$ One, at $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{2}$ and $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{4}$ and $\dfrac{3\pi}{2}$
asked Mar 31, 2020 in Calculus Lakshman Patel RJIT 125 views
0 votes
1 answer
17
Consider a function $f:[0,1]\rightarrow [0,1]$ which is twice differentiable in $(0,1).$ Suppose it has exactly one global maximum and exactly one global minimum inside $(0,1)$. What can you say about the behaviour of the first derivative $f'$ and and second derivative $f''$ ... $f'$ is zero at at least two points, $f''$ is zero at at least two points
asked Feb 10, 2020 in Calculus Lakshman Patel RJIT 178 views
2 votes
1 answer
18
Let $a_n=\bigg( 1 – \frac{1}{\sqrt{2}} \bigg) \cdots \bigg( 1 – \frac{1}{\sqrt{n+1}} \bigg), \: n \geq 1$. Then $\underset{n \to \infty}{\lim} a_n$ equals $1$ does not exist equals $\frac{1}{\sqrt{\pi}}$ equals $0$
asked Sep 23, 2019 in Calculus Arjun 278 views
4 votes
4 answers
19
$\underset{x \to \infty}{\lim} \left( \frac{3x-1}{3x+1} \right) ^{4x}$ equals $1$ $0$ $e^{-8/3}$ $e^{4/9}$
asked Sep 23, 2019 in Calculus Arjun 425 views
3 votes
2 answers
20
$\underset{n \to \infty}{\lim} \dfrac{1}{n} \bigg( \dfrac{n}{n+1} + \dfrac{n}{n+2} + \cdots + \dfrac{n}{2n} \bigg)$ is equal to $\infty$ $0$ $\log_e 2$ $1$
asked Sep 23, 2019 in Calculus Arjun 302 views
2 votes
2 answers
21
If $f(x)$ is a real valued function such that $2f(x)+3f(-x)=15-4x$, for every $x \in \mathbb{R}$, then $f(2)$ is $-15$ $22$ $11$ $0$
asked Sep 23, 2019 in Calculus Arjun 201 views
2 votes
3 answers
22
If $f(x) = \dfrac{\sqrt{3} \sin x}{2+\cos x}$, then the range of $f(x)$ is the interval $[-1 , \sqrt{3}{/2}]$ the interval $[-\sqrt{3}{/2}, 1]$ the interval $[-1, 1]$ none of these
asked Sep 23, 2019 in Calculus Arjun 146 views
2 votes
1 answer
23
The integral $\int _0^{\frac{\pi}{2}} \frac{\sin^{50} x}{\sin^{50}x +\cos^{50}x} dx$ equals $\frac{3 \pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{4}$ none of these
asked Sep 23, 2019 in Calculus Arjun 220 views
2 votes
1 answer
24
Let the function $f(x)$ be defined as $f(x)=\mid x-1 \mid + \mid x-2 \:\mid$. Then which of the following statements is true? $f(x)$ is differentiable at $x=1$ $f(x)$ is differentiable at $x=2$ $f(x)$ is differentiable at $x=1$ but not at $x=2$ none of the above
asked Sep 23, 2019 in Calculus Arjun 170 views
2 votes
2 answers
25
$\underset{x \to 2}{\lim} \dfrac{1}{1+e^{\frac{1}{x-2}}}$ is $0$ $1/2$ $1$ non-existent
asked Sep 23, 2019 in Calculus Arjun 163 views
3 votes
1 answer
26
It is given that $e^a+e^b=10$ where $a$ and $b$ are real. Then the maximum value of $(e^a+e^b+e^{a+b}+1)$ is $36$ $\infty$ $25$ $21$
asked Sep 23, 2019 in Calculus Arjun 139 views
0 votes
1 answer
27
If $A(t)$ is the area of the region bounded by the curve $y=e^{-\mid x \mid}$ and the portion of the $x$-axis between $-t$ and $t$, then $\underset{t \to \infty}{\lim} A(t)$ equals $0$ $1$ $2$ $4$
asked Sep 23, 2019 in Geometry Arjun 81 views
1 vote
0 answers
28
Suppose that the function $h(x)$ is defined as $h(x)=g(f(x))$ where $g(x)$ is monotone increasing, $f(x)$ is concave, and $g’’(x)$ and $f’’(x)$ exist for all $x$. Then $h(x)$ is always concave always convex not necessarily concave None of these
asked Sep 23, 2019 in Calculus Arjun 142 views
0 votes
1 answer
29
Let $f(x) = \dfrac{2x}{x-1}, \: x \neq 1$. State which of the following statements is true. For all real $y$, there exists $x$ such that $f(x)=y$ For all real $y \neq 1$, there exists $x$ such that $f(x)=y$ For all real $y \neq 2$, there exists $x$ such that $f(x)=y$ None of the above is true
asked Sep 23, 2019 in Calculus Arjun 92 views
...