# Recent questions tagged calculus 1 vote
1
Compute without using power series expansion $\displaystyle \lim_{x \to 0} \frac{\sin x}{x}.$
2
Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on the interval $[-3, 3]$ and a differentiable function in the interval $(-3,3)$ such that for every $x$ in the interval, $f’(x) \leq 2$. If $f(-3)=7$, then $f(3)$ is at most __________
3
Consider the following expression. $\displaystyle \lim_{x\rightarrow-3}\frac{\sqrt{2x+22}-4}{x+3}$ The value of the above expression (rounded to 2 decimal places) is ___________.
4
The function $f(x)=x^{5}-5x^{4}+5x^{3}-1$ has one minima and two maxima two minima and one maxima two minima and two maxima one minima and one maxima
5
$\underset{x \rightarrow 0}{\lim} \dfrac{x^{3}+x^{2}-5x-2}{2x^{3}-7x^{2}+4x+4}=?$ $-0.5$ $(0.5)$ $\infty$ None of the above
6
$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \sin^{7}\theta \cos ^{4} \theta d\theta=?$ $16/1155$ $16/385$ $16\pi/385$ $8\pi/385$
7
$\displaystyle \lim_{x \rightarrow a}\frac{1}{x^{2}-a^{2}} \displaystyle \int_{a}^{x}\sin (t^{2})dt=$? $2a \sin (a^{2})$ $2a$ $\sin (a^{2})$ None of the above
8
$\displaystyle \lim_{x \rightarrow 0}\frac{1}{x^{6}} \displaystyle \int_{0}^{x^{2}}\frac{t^{2}dt}{t^{6}+1}=$? $1/4$ $1/3$ $1/2$ $1$
9
A ladder $13$ feet long rests against the side of a house. The bottom of the ladder slides away from the house at a rate of $0.5$ ft/s. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is $5$ feet from the house? $\dfrac{5}{24} \text{ ft/s} \\$ $\dfrac{5}{12} \text{ ft/s} \\$ $-\dfrac{5}{24} \text {ft/s} \\$ $-\dfrac{5}{12} \text{ ft/s}$
10
What is the maximum value of the function $f(x) = 2x^{2} – 2x + 6$ in the interval $[0,2]?$ $6$ $10$ $12$ $5,5$
11
The value of the Integral $I = \displaystyle{}\int_{0}^{\pi/2} x^{2}\sin x dx$ is $(x+2)/2$ $2/(\pi-2)$ $\pi – 2$ $\pi + 2$
12
The function $f\left ( x \right )=\dfrac{x^{2}-1}{x-1}$ at $x=1$ is : Continuous and differentiable Continuous but not differentiable Differentiable but not continuous Neither continuous nor differentiable
13
The greatest and the least value of $f(x)=x^4-8x^3+22x^2-24x+1$ in $[0,2]$ are $0,8$ $0,-8$ $1,8$ $1,-8$
14
The value of improper integral $\displaystyle\int_{0}^{1} x\ln x =?$ $1/4$ $0$ $-1/4$ $1$
15
Maxima and minimum of the function $f(x)=2x^3-15x^2+36x+10$ occur; respectively at $x=3$ and $x=2$ $x=1$ and $x=3$ $x=2$ and $x=3$ $x=3$ and $x=4$
16
What is the derivative w.r.t $x$ of the function given by $\large \Phi(x)= \displaystyle \int_{0}^{x^2}\sqrt t\:dt$, $2x^2$ $\sqrt x$ $0$ $1$
17
$\underset{x\to 0}{\lim} \dfrac{(1-\cos x)}{2}$ is equal to $0$ $1$ $1/3$ $1/2$
18
The minimum value of $\mid x^2-5x+2\mid$ is $-5$ $0$ $-1$ $-2$
19
Consider the function $f(x)=\sin(x)$ in the interval $\bigg [​\dfrac{ \pi}{4},\dfrac{7\pi}{4}\bigg ]$. The number and location(s) of the minima of this function are: One, at $\dfrac{\pi}{2} \\$ One, at $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{2}$ and $\dfrac{3\pi}{2} \\$ Two, at $\dfrac{\pi}{4}$ and $\dfrac{3\pi}{2}$
20
Consider the functions $e^{-x}$ $x^{2}-\sin x$ $\sqrt{x^{3}+1}$ Which of the above functions is/are increasing everywhere in $[ 0,1]$? Ⅲ only Ⅱ only Ⅱ and Ⅲ only Ⅰ and Ⅲ only
21
Consider a function $f:[0,1]\rightarrow [0,1]$ which is twice differentiable in $(0,1).$ Suppose it has exactly one global maximum and exactly one global minimum inside $(0,1)$. What can you say about the behaviour of the first derivative $f'$ and and second derivative $f''$ ... $f'$ is zero at at least two points, $f''$ is zero at at least two points
22
Let $a_n=\bigg( 1 – \frac{1}{\sqrt{2}} \bigg) \cdots \bigg( 1 – \frac{1}{\sqrt{n+1}} \bigg), \: n \geq 1$. Then $\underset{n \to \infty}{\lim} a_n$ equals $1$ does not exist equals $\frac{1}{\sqrt{\pi}}$ equals $0$
23
$\underset{x \to \infty}{\lim} \left( \frac{3x-1}{3x+1} \right) ^{4x}$ equals $1$ $0$ $e^{-8/3}$ $e^{4/9}$
24
$\underset{n \to \infty}{\lim} \dfrac{1}{n} \bigg( \dfrac{n}{n+1} + \dfrac{n}{n+2} + \cdots + \dfrac{n}{2n} \bigg)$ is equal to $\infty$ $0$ $\log_e 2$ $1$
If $f(x)$ is a real valued function such that $2f(x)+3f(-x)=15-4x$, for every $x \in \mathbb{R}$, then $f(2)$ is $-15$ $22$ $11$ $0$
If $f(x) = \dfrac{\sqrt{3} \sin x}{2+\cos x}$, then the range of $f(x)$ is the interval $[-1 , \sqrt{3}{/2}]$ the interval $[-\sqrt{3}{/2}, 1]$ the interval $[-1, 1]$ none of these
Let the function $f(x)$ be defined as $f(x)=\mid x-1 \mid + \mid x-2 \:\mid$. Then which of the following statements is true? $f(x)$ is differentiable at $x=1$ $f(x)$ is differentiable at $x=2$ $f(x)$ is differentiable at $x=1$ but not at $x=2$ none of the above