When a coin is tossed, the probability of getting a Head is $p, 0 < p < 1$. Let $N$ be the random variable denoting the number of tosses till the first Head appears, including the toss where the Head appears. Assuming that successive tosses are independent, the expected value of $N$ is $\dfrac{1}{p}$ $\dfrac{1}{(1 - p)}$ $\dfrac{1}{p^{2}}$ $\dfrac{1}{(1 - p^{2})}$

asked
Oct 31, 2014
in Probability
Ishrat Jahan
5k views