# Recent questions tagged identify-function 1
The next two questions refer to the following program. In the code below reverse$(A,i,j)$ takes an array $A,$ indices $i$ and $j$ with $i\leq j,$ and reverses the segment $A[i],A[i+1],\cdots,A[j].$ ... ; } } reverse(A,i,m); } return; } When the procedure terminates, the array A has been: Sorted in descending order Sorted in ascending order Reversed Left unaltered
1 vote
2
The next two questions refer to the following program. In the code below reverse$(A,i,j)$ takes an array $A,$ indices $i$ and $j$ with $i\leq j,$ and reverses the segment $A[i],A[i+1],\cdots,A[j].$ For instance if $A=[0,1,2,3,4,5,6,7]$ ... ; } return; } The number of times the test $A[ j ] > A[ m ]$ is executed is: $4950$ $5050$ $10000$ Depends on the contents of $A$
3
What does the following function compute in terms of $n$ and $d$, for integer value of $n$ and $d,d>1?$ Note that $a//b$ denotes the quotient(integer part) of $a \div b,$ for integers $a$ and $b$. For instance $7//3$ is $2.$ function foo(n,d){ x := ... of size $n.$ The number of digits in the base $d$ representation of $n.$ The number of ways of partitioning $n$ elements into groups of size $d.$
4
Consider the following C function. void convert (int n ) { if (n<0) printf{ %d , n); else { convert(n/2); printf( %d , n%2); } } Which one of the following will happen when the function convert is called with any positive integer $n$ as ... in the reverse order and terminate It will print the binary representation of $n$ but will not terminate It will not print anything and will not terminate
5
Consider the two given functions: int fun1(int x, int y) { if (y==0) return 0; return (x+fun2(x, y-1)); } int fun2(int x, int y) { if (x==0) return y; return fun2(x-1, x+y); } What will be the value returned by $\text{fun1}(4, 4)$ ____
6
Consider the following piece of code: int function(int a[], int n, int x) { int i; for (i=0; i<n && a[i]!=x;i++); if (i==n) return -1; else return i; } A function call is made with the arguments as follows: $a[]=\{5, 32, 1, 9, 7, 2\}$ $n=6$ $x=8$ What is the values returned by the above code?
7
Original Question - here Consider the following C function in which size is the number of elements in the array E: int MyX(int *E, unsigned int size) { int Y = 0; int Z; int i, j, k; for(i = 0; i< size; i++) Y = Y + E[i]; for(i=0; i < size; i++) for(j = i; ... ============================== Can someone trace the code by taking some arbitrary values in the array and show how to do this? Thank you!
8
Assume $A$ and $B$ are non-zero positive integers. The following code segment: while(A!=B){ if*(A> B) A -= B; else B -= A; } cout<<A; // printing the value of A Computes the $LCM$ of two numbers Divides the larger number by the smaller number Computes the $GCD$ of two numbers Finds the smaller of two numbers
1 vote
9
An array $A$ consists of $n$ integers in locations $A, A, \ldots A[n-1]$. It is required to shift the elements of the array cyclically to the left by $k$ places, where $1<=k<=(n-1)$. An incomplete algorithm for doing this in linear time, without using another array is given bellow. Complete the ...
1 vote
10
Function what(x, n:integer): integer: Var value : integer begin value := 1 if n > 0 then begin if n mod 2 =1 then value := value * x; value := value * what(x*x, n div 2); end; what := value; end; convert the code in c
11
Consider the following snippet of a C program. Assume that swap $(\&x, \&y)$ exchanges the content of $x$ and $y$: int main () { int array[] = {3, 5, 1, 4, 6, 2}; int done =0; int i; while (done==0) { done =1; for (i=0; i<=4; i++) { if (array[i] < array[i+1] ... if (array[i] > array[i-1]) { swap(&array[i], &array[i-1]); done =0; } } } printf( %d , array); } The output of the program is _______
12
In the code fragment given below, $\mathsf{start}$ and $\mathsf{end}$ are integer values and $\mathsf{prime(x)}$ is a function that returns $\mathsf{true}$ if $\mathsf{x}$ is a prime number and $\mathsf{false}$ otherwise. i:=0; j:=0; k:=0; from (m := start; m <= end; m := m+1){ if ( ... } } At the end of the loop: $k == i-j.$ $k == j-i.$ $k == -j-i.$ Depends on $\mathsf{start}$ and $\mathsf{end}$
13
Consider the following program modifying an $n \times n$ square matrix $A$: for i=1 to n: for j=1 to n: temp=A[i][j]+10 A[i][j]=A[j][i] A[j][i]=temp-10 end for end for Which of the following statements about the contents of matrix $A$ at the end of this program must be TRUE? ... by $10$ the new matrix $A$ is symmetric, that is, $A[i][j]=A[j][i]$ for all $1 \leq i, j \leq n$ $A$ remains unchanged
14
What is the output produced by the following program, when the input is "HTGATE" Function what (s:string): string; var n:integer; begin n = s.length if n <= 1 then what := s else what :=contact (what (substring (s, 2, n)), s.C ) end; Note type string=record length:integer; ... $s_{1}$ length + $s_{2}$ - length obtained by concatenating $s_{1}$ with $s_{2}$ such that $s_{1}$ precedes $s_{2}$.
15
The following program computes values of a mathematical function $f(x)$. Determine the form of $f(x)$. main () { int m, n; float x, y, t; scanf ("%f%d", &x, &n); t = 1; y = 0; m = 1; do { t *= (-x/m); y += t; } while (m++ < n); printf ("The value of y is %f", y); }
16
What is the following function doing? unsigned int foo(unsigned int x) { unsigned int c = sizeof x; c <<= 3; if(x == 0) return c; c--; while(x = x & x-1) c--; return c; } Counting the number of bits in the binary representation of x Counting the number of set bits in the binary representation of x Counting the number of unset bits in the binary representation of x None of the above
17
Consider the following C functions: int f1(int a, int b) { while (a != b) { if(a > b) a = a - b; else b = b - a; } return a; } int f2(int a, int b) { while (b != 0) { int t = b; b = a % b; a = t; } return a ... f1 and f2 return same value for all positive inputs but not f3 For some positive input all 3 functions return different values f2 and f3 return same value for all positive inputs but not f1
18
Consider the following pseudocode x:=1; i:=1; while ( x $\leq$ 500) begin x:=2$^x$; i:=i+1; end What is the value of i at the end of the pseudocode? 4 5 6 7
19
What is the value of $F(4)$ using the following procedure: function F(K : integer) integer; begin if (k<3) then F:=k else F:=F(k-1)*F(k-2)+F(k-3) end; $5$ $6$ $7$ $8$
20
Study the following program //precondition: x>=0 public void demo(int x) { System.out.print(x % 10); if (x % 10 != 0) { demo(x/10); } System.out.print(x%10); } Which of the following is printed as a result of the call demo $(1234)$? $1441$ $3443$ $12344321$ $43211234$
21
What is the output of the following program? int main() { int i=0; do { if (i >=5) { i+=2; printf("%d \n", i); break; } else { printf("%d \n", ++i); continue; } } while (i<7); }
1 vote
22
Let $x, y$ be two non-negative integers $< 2^{32}$. By $x \wedge y$ we mean the integer represented by the bitwise logical $AND$ of the 32- bit binary representations of $x$ and $y$. For example, if $x = 13$ and $y = 6$, then $x \wedge y$ ... of the pseudo-code for the input $x = 13$? What will be the output of the pseudo-code for an arbitrary non-negative integer $x < 2^{32}$?
1 vote
23
A finite sequence of bits is represented as a list with values from the set $\{0,1\}$-for example, $[0,1,0], [1,0,1,1], \dots [ \: ]$ denotes the empty list, and $[b]$ is the list consisting of one bit $b$. For a nonempty list $l, \text{ head}(l)$ returns the first element of ... bit. g2(n) if (n == 0) then return(0) else return f2(g2(n-1),g1(n)) endif What is the value of $g2(256)$ and $g2(257)$?
24
A finite sequence of bits is represented as a list with values from the set $\{0,1\}$. For example, $[0,1,0], [1,0,1,1], \dots [ \: ]$ denotes the empty list, and $[b]$ is the list consisting of one bit $b$. The function $\text{length}(l)$ returns the ... ( mystery1(mystery2(s,tail(t)),mystery2(s,tail(t)))) endif Suppose $s=t=110100100$. What are the first two bits of $\text{mystery2(s,t)}$?
25
Consider the code below, defining the functions $f$ and $g$: f(m, n) { if (m == 0) return n; else { q = m div 10; r = m mod 10; return f(q, 10*n + r); } } g(m, n) { if (n == 0) return m; else { q = m div 10; r = m mod 10; return g(f(f(q, 0), r), n-1); } } What does $g(m, n)$ compute, for nonnegative numbers $m$ and $n$?
26
Consider the code below, defining the functions $f$ and $g$: f(m, n) { if (m == 0) return n; else { q = m div 10; r = m mod 10; return f(q, 10*n + r); } } g(m, n) { if (n == 0) return m; else { q = m div 10; r = m mod 10; return g(f(f(q, 0), r), n-1); } } Compute $g(3, 7), \: g(345, 1), \: g(345, 4) \text{ and } \: g(345, 0)$.
Consider the code below, defining the function $A$: A(m, n, p) { if (p == 0) return m+n; else if (n == 0 && p == 1) return 0; else if (n == 0 && p == 2) return 1; else if (n == 0) return m; else return A(m, A(m,n-1,p), p-1); } Compute $A(2, 2, 3)$ and $A(2, 3, 3)$.
Consider the code below, defining the function $A$: A(m, n, p) { if (p == 0) return m+n; else if (n == 0 && p == 1) return 0; else if (n == 0 && p == 2) return 1; else if (n == 0) return m; else return A(m, A(m,n-1,p), p-1); } Express $A(m, n, 2)$ as a function of $m$ and $n$.
Consider the code below, defining the function $A$: A(m, n, p) { if (p == 0) return m+n; else if (n == 0 && p == 1) return 0; else if (n == 0 && p == 2) return 1; else if (n == 0) return m; else return A(m, A(m,n-1,p), p-1); } Express $A(m, n, 1)$ as a function of $m$ and $n$.