GATE2007-28 [closed]

1 vote
409 views

Consider the series $x_{n+1} = \frac{x_n}{2}+\frac{9}{8x_n},x_0 = 0.5$ obtained from the Newton-Raphson method. The series converges to

1. 1.5
2. $\sqrt{2}$
3. 1.6
4. 1.4
closed with the note: Out of syllabus now

closed

Related questions

1
770 views
Newton-Raphson iteration formula for finding $\sqrt[3]{c}$, where $c > 0$ is $x_{n+1}=\frac{2x_n^3 + \sqrt[3]{c}}{3x_n^2}$ $x_{n+1}=\frac{2x_n^3 - \sqrt[3]{c}}{3x_n^2}$ $x_{n+1}=\frac{2x_n^3 + c}{3x_n^2}$ $x_{n+1}=\frac{2x_n^3 - c}{3x_n^2}$
The Newton-Raphson method is to be used to find the root of the equation $f(x)=0$ where $x_o$ is the initial approximation and $f’$ is the derivative of $f$. The method converges always only if $f$ is a polynomial only if $f(x_o) <0$ none of the above
A piecewise linear function $f(x)$ is plotted using thick solid lines in the figure below (the plot is drawn to scale). If we use the Newton-Raphson method to find the roots of $f(x)=0$ using $x_0, x_1,$ and $x_2$ respectively as initial guesses, the roots obtained would be ... and 0.6 respectively 0.6, 0.6, and 1.3 respectively 1.3, 1.3, and 0.6 respectively 1.3, 0.6, and 1.3 respectively
The Newton-Raphson iteration $x_{n+1} = \frac{1}{2}\left(x_n+\frac{R}{x_n}\right)$ can be used to compute the square of R reciprocal of R square root of R logarithm of R