$\begin{bmatrix} 1 & a & a^2 & \dots & a^n \\ 1 & a & a^2 & \dots & a^n \\ \vdots & \vdots & \vdots & \: & \vdots \\ \vdots & \vdots & \vdots & \: & \vdots \\ 1 & a & a^2 & \dots & a^n \end{bmatrix}$
$R_2 \rightarrow R_2-R_1 , R_3 \rightarrow R_3-R_1 , R_4 \rightarrow R_4-R_1$ ,and so on
$\begin{bmatrix} 1 & a & a^2 & \dots & a^n \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \: & \vdots \\ \vdots & \vdots & \vdots & \: & \vdots \\ 0 & 0 &0 & \dots &0 \end{bmatrix}$
Rank of the Matrix=$1$
Hence, option (A)1 is the correct choice.