589 views
Let A be a 3*3 matrix whose characteristics roots are 3,2,-1. If $B=A^2-A$ then |B|=?

a)24

b)-2

c)12

d)-12

1
24

Let

A = $\begin{bmatrix} 3 &0 &0 \\ 0&2 &0 \\ 0&0 &-1 \end{bmatrix}$

A$^{2}$ = $\begin{bmatrix} 9 &0 &0 \\ 0&4 &0 \\ 0&0 &1 \end{bmatrix}$

B = A$^{2}$ - A

=$\begin{bmatrix} 6 &0 &0 \\ 0&2 &0 \\ 0&0 &2 \end{bmatrix}$

Thus |B| = 24

selected
Characteristic roots are nothing but eigenvalues. So the eigenvalues of matrix A are $3,2,-1$.

Also, $determinant\ of\ matrix\ B = Product\ of\ its\ eigenvalues.$

Now eigenvalues of matrix $B$ can be found by substituting the corresponding eigenvalues of matrix $A$.

$B= A^2-A$

$1.\ B = 3^2-3=9-3=6$

$2.\ B=2^2-2=4-2=2$

$3.\ B=-1^2-(-1)=1+1=2$

$|B|=6*2*2=24\ (Answer)$
ago

## Related questions

1
469 views
Let $A$ be a $4\times 4$ matrix with real entries such that $-1,1,2,-2$ are eigen values.If $B=A^4-5A^2+5I$ then trace of $A+B$ is...........
The eigenvalues of the matrix $X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ are $1,1,4$ $1,4,4$ $0,1,4$ $0,4,4$
Let $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of the matrix $A \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & \sin t \\ 0 & – \sin t & \cos t \end{pmatrix}.$ If $\lambda_1+\lambda_2+\lambda_3 = \sqrt{2}+1$, then the set of possible values of $t, \: – \pi \leq t < \pi$, is Empty set $\{ \frac{\pi}{4} \}$ $\{ – \frac{\pi}{4}, \frac{\pi}{4} \}$ $\{ – \frac{\pi}{3}, \frac{\pi}{3} \}$
If the matrix $A = \begin{bmatrix} a & 1 \\ 2 & 3 \end{bmatrix}$ has $1$ as an eigenvalue, then $\textit{trace}(A)$ is $4$ $5$ $6$ $7$