edited by
1,012 views
21 votes
21 votes

Let $\vec{v}$ be an eigenvector of an invertible matrix $A$. Which of the following are necessarily true?

  1. $\vec{v}$ is an eigenvector of $A^{-1}$.
  2. $\vec{v}$ is an eigenvector of $A^2$.
  3. $\vec{v}$ is an eigenvector of $A+I$.
  4. $\vec{v}$ is an eigenvector of $A+2 I$.
edited by

2 Answers

39 votes
39 votes

 $Given  Ax = \lambda x$

As A in invertible so

Option A:  $A^{-1}Ax = \lambda A^{-1}x $ (multiply by A^{-1) on both side)

 (1/ $\lambda$)x = $A^{-1}$x

$A^{-1}$x = $\lambda^{‘}$x 
Hence option A is true 

Option B:  $AAx =  \lambda A x $ (multiply by A on both side)

$A^{2}x = \lambda^{2}x$ (as Ax =$\lambda x$)

Finally $A^{2}x = \lambda^{‘}x$
hence B is true.
Option C:   $Ax + x = \lambda x + x $ (Adding x on both side)

$(A +I)x = (\lambda +1)x$

$(A +I)x = \lambda^{‘’}x$

so C is Also True.
Option D:similar to option C just add 2x on both side.
 

$Hence A,B,C,D all are true$

 

 

0 votes
0 votes
Given $|A| \neq 0, \vec{V}$ is an eigenvector of 'A'.

A)
$$
\begin{aligned}
& A \vec{V}=\lambda \vec{V} \\
& \vec{V}=\lambda A^{-1} \vec{V} \\
& \Rightarrow A^{-1} \vec{V}=\frac{1}{\lambda} \vec{V} \quad
\end{aligned}
$$
                                                                 $\therefore \vec{v}$ is an eigenvector of $A^{-1}$

B) $A \vec{V}=\lambda \vec{V}$
$$
\begin{aligned}
A^2 \vec{v}=A A \vec{V} & =A \lambda \vec{V} \\
& =\lambda^2 \vec{V}
\end{aligned}
$$
                                                               $\therefore \vec{V}$ is an eigen vector of $A^2$.

C)
$$
\begin{aligned}
&(A+I) \vec{v}=A \vec{v}+\vec{v}\\
&=(\lambda+1) \vec{v}\\ \quad \therefore \vec{v} \text { is an eigen vector of }
& A+I .
\end{aligned}
$$
D)
$$
\begin{aligned}
(A+2 I) \vec{v} & =A \vec{v}+2 \vec{v} \\
& =(\lambda+2) \vec{v}
\end{aligned}
$$
                                                        $\therefore \vec{v}$ is an eigenvector of $ A+2 I \text {. } $
 
Answer:

Related questions

1.1k
views
4 answers
23 votes
GO Classes asked Mar 29, 2023
1,064 views
Let $A$ be a $n \times n$ matrix, and let $u, v, w$ be nonzero vectors in $\mathbf{R}^n$ which are distinct $(\text{so}\; u \neq v, u \neq w$, and ... $u-v$v-w$u-w$none of the above
1.3k
views
3 answers
32 votes
GO Classes asked Mar 29, 2023
1,250 views
Let $A$ be a $3 \times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1,$ and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ ... ${\left[\begin{array}{c}92 \\-2 \\96\end{array}\right]}$
1.2k
views
4 answers
18 votes
GO Classes asked Mar 29, 2023
1,167 views
Consider a matrix $A_{n \times n}$ having the following characteristic equation -$\lambda^2(\lambda-3)(\lambda+2)^3(\lambda-4)^3$What could be $\operatorname{rank}(\mathrm{A})?$6$7$8$9$
1.4k
views
3 answers
16 votes
GO Classes asked Mar 29, 2023
1,394 views
Which of the following is/are TRUE?If the echelon form of an $m \times n$ matrix has a pivot in every column then $n \geq m$If the echelon form ... equations in $13$ unknowns has at least one solution then it has infinitely many solutions.