115 views
2 votes
2 votes
Suppose that $a \neq 0$ and $a \neq b$. Which equation below is the equation relating $a, b$ and $c$ so that the vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
a
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
b
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
2 \\
c
\end{array}\right]
$$
form a basis for $\mathbb{R}^{3}$ ?
  1. $3 a-4 b+c \neq 0$
  2. $4 a-3 b+c \neq 0$
  3. $3 a-4 b-c \neq 0$
  4. $4 a-3 b-c \neq 0$

1 Answer

2 votes
2 votes

To make the basis of $R^3$, vectors have to be Linearly Independent

LI Matrix of 3x3 will have 3 pivot variables in row-echelon form

Let's make the above matrix to row-echelon form


$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 2 \\ a & b & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 2 \\ a-k.1 & b-k.1 & c+k.1 \end{bmatrix}$

$R^3 \rightarrow R^3 - k.R^1$

$a-k = 0 \Rightarrow a = k$

Continuing the row operation

$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 2 \\ a-k.1 & b-k.1 & c+k.1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 3 \\ a-k.1 & b-k.1 & c+k.1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 3 \\ a-k.1 & b-k.1 - m.1 & c+k.1-m.3 \end{bmatrix}$

$R^2 \rightarrow R^2 - R^1 $
$R^3 \rightarrow R^3 - m.R^1$

So,
$b-k-m = 0 \Rightarrow b-a-m=0 \Rightarrow m=b-a$

To make the matrix have 3 pivots, 3rd row 3rd column element has to be a non-zero element

So, $c+k-3m \neq0$

$c+a-3(b-a) \neq0$

$c+a-3b+3a \neq0$

$c-3b+4a \neq0$
Option B is the correct option

Answer:

Related questions

200
views
1 answers
5 votes
GO Classes asked Apr 11
200 views
Suppose that $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ ... is linearly independent
130
views
1 answers
3 votes
GO Classes asked Apr 11
130 views
Let the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+x_{2}, x_{2}\right)$. Then the nullity of $T$ is:0123
132
views
1 answers
1 votes
GO Classes asked Apr 11
132 views
Consider a linear system $A \mathbf{x}=\mathbf{b}$, where $A$ is a $3 \times 4$ matrix with $\operatorname{Rank}(A)=2$.How many solutions ... infinitely many solutions, (ii) no solution.(i) infinitely many solutions, (ii) unique solution.
155
views
2 answers
3 votes
GO Classes asked Apr 11
155 views
Consider two statements S1 and S2.S1: If $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly INDEPENDENT vectors in $V$ ... , $\mathrm{S} 2$ is true.Both S1 and S2 are true.Both S1 and S2 are false.