142 views
4 votes
4 votes
Let $T_{1}, T_{2}: R^{5} \rightarrow R^{3}$ be linear transformations s.t $\operatorname{rank}\left(T_{1}\right)=3$ and nullity $\left(T_{2}\right)=3$. Let $T_{3}: R^{3} \rightarrow R^{3}$ be linear transformation s.t $T_{3}\left(T_{1}\right)=T_{2}$. Then find rank of $T_{3}$

1 Answer

0 votes
0 votes
By the rank-nullity theorem we have
$$
\operatorname{rank}\left(T_{2}\right)=\operatorname{dim} \mathbb{R}^{5}-\operatorname{nullity}\left(T_{2}\right)=2
$$
so
$$
2=\operatorname{rank}\left(T_{2}\right)=\operatorname{rank}\left(T_{3}\left(T_{1}\right)\right)=\operatorname{dim}\left(T_{3}\left(T_{1}\left(\mathbb{R}^{5}\right)\right)=\operatorname{dim}\left(T_{3}\left(\mathbb{R}^{3}\right)\right)=\operatorname{rank}\left(T_{3}\right)\right.
$$
Answer:

Related questions

122
views
1 answers
3 votes
GO Classes asked Apr 11
122 views
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ ... 2 \\ 1\end{array}\right]$\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right]$
134
views
2 answers
5 votes
GO Classes asked Apr 11
134 views
Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by$T(x, y)=(x-y, x-2 y), \text { for } x, y \in \mathbb{R}$Let $\mathcal{E}$ ... -1\end{array}\right)$\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$
139
views
1 answers
5 votes
GO Classes asked Apr 11
139 views
Consider a $4 \times 4$ matrix $A$ and a vector $\mathbf{v} \in \mathbb{R}^{4}$ such that $A^{4} \mathbf{v}=\mathbf{0}$ ... $\mathcal{B}$ is a basis of $\mathbb{R}^{4}$.$\mathcal{B}$ is not linearly independent.