how?

The Gateway to Computer Science Excellence

First time here? Checkout the FAQ!

x

+16 votes

When two $4-bit$ numbers $A = a_3a_2a_1a_0$ and $B=b_3b_2b_1b_0$ are multiplied, the bit $c_1$ of the product $C$ is given by ________

+24 votes

Best answer

$\begin{matrix}

& & & &a_3 & a_2 & a_1&a_0 \\

& & &\times & b_3 &b_2 &b_1 &b_0 \\

\hline

& & & & a_3b_0 &a_2b_0 &a_1b_0 & a_0b_0&\\

& & &a_3b_1 &a_2b_1 &a_1b_1 & a_0b_1 &- &\\

& &a_3b_2 &a_2b_2 &a_1b_2 &a_0b_2 &- &- &\\

& a_3b_3 &a_2b_3 &a_1b_3 &a_0b_3 &- &- &- \\

\hline

c_7&c_6&c_5 &c_4 &c_3 &c_2 &c_1 &c_0 \\ \hline

\end{matrix}$

$c_1=b_1 a_0 \oplus a_1 b_0$

& & & &a_3 & a_2 & a_1&a_0 \\

& & &\times & b_3 &b_2 &b_1 &b_0 \\

\hline

& & & & a_3b_0 &a_2b_0 &a_1b_0 & a_0b_0&\\

& & &a_3b_1 &a_2b_1 &a_1b_1 & a_0b_1 &- &\\

& &a_3b_2 &a_2b_2 &a_1b_2 &a_0b_2 &- &- &\\

& a_3b_3 &a_2b_3 &a_1b_3 &a_0b_3 &- &- &- \\

\hline

c_7&c_6&c_5 &c_4 &c_3 &c_2 &c_1 &c_0 \\ \hline

\end{matrix}$

$c_1=b_1 a_0 \oplus a_1 b_0$

+16

When we consider 2 bits, ADD and XOR works the same except when both inputs are 1. In this case, ADD gives 10, while XOR gives 0. Since, we are asked only about the bit c1, our answer should be 0 which is given by XOR.

+1

@ sid1221 We need to add these two bits,so we can use same expression of sum of half adder which is exor

- All categories
- General Aptitude 1.3k
- Engineering Mathematics 5.4k
- Digital Logic 2.1k
- Programming & DS 3.8k
- Algorithms 3.3k
- Theory of Computation 4.1k
- Compiler Design 1.6k
- Databases 3k
- CO & Architecture 2.6k
- Computer Networks 3k
- Non GATE 1.1k
- Others 1.4k
- Admissions 498
- Exam Queries 443
- Tier 1 Placement Questions 19
- Job Queries 60
- Projects 9

37,183 questions

44,756 answers

127,490 comments

43,817 users