search
Log In
25 votes
3.1k views

If for non-zero $x, \: af(x) + bf(\frac{1}{x}) = \frac{1}{x} - 25$ where a $a \neq b \text{ then } \int_1^2 f(x)dx$ is

  1. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(\ln 2 - 25) + \frac{47b}{2} \end{bmatrix}$
  2. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(2\ln 2 - 25) - \frac{47b}{2} \end{bmatrix}$
  3. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(2\ln 2 - 25) + \frac{47b}{2} \end{bmatrix}$
  4. $\frac{1}{a^2 - b^2} \begin{bmatrix} a(\ln 2 - 25) - \frac{47b}{2} \end{bmatrix}$
in Calculus
edited by
3.1k views
5

In the equation, substitute (1/x) for x, then you get another equation. Now solve the given equation and the obtained equation. You will get f(x). And then integrate. Simple calculations.

Answer: A 

1 Answer

71 votes
 
Best answer

$af\left ( x \right )+bf\left ( \frac{1}{x} \right )=\frac{1}{x} -25$ --- $\left ( 1 \right )$


Integrating both sides,

$a\int_{1}^{2}f\left ( x \right )dx+b\int_{1}^{2}f\left ( \frac{1}{x} \right )dx=\left [ \log\left ( x \right )-25x \right ]_{1}^{2}=\log2-25$ --- $\left ( 2 \right )$


Replacing  $x$ by $\frac{1}{x}$ in $\left ( 1 \right )$, we get

$af\left ( \frac{1}{x} \right )+bf\left ( x \right )=x-25$

Integrating both sides, we get

$a\int_{1}^{2}f\left ( \frac{1}{x} \right )dx+b\int_{1}^{2}f\left ( x \right )dx=\left [ \frac{x^{2}}{2}-25x \right ]_{1}^{2}=-\frac{47}{2}$ --- $\left ( 3 \right )$


Eliminate $\int_{1}^{2}f\left ( \frac{1}{x} \right )$ between $\left ( 2 \right )$ and $\left ( 3 \right )$ by multiplying $\left ( 2 \right )$ by $a$ and $\left ( 3 \right )$ by $b$ and subtracting

$\therefore \left ( a^{2}-b^{2} \right )\int_{1}^{2}f\left ( x \right )dx=a\left ( \log2-25 \right )+b\times\frac{47}{2}$

$\therefore \int_{1}^{2}f\left ( x \right )dx=\frac{1}{\left ( a^{2}-b^{2} \right )}\left [ a\left ( \log2-25 \right )+\frac{47b}{2} \right ]$


Answer: A. $\frac{1}{\left ( a^{2}-b^{2} \right )}\left [ a\left ( \log2-25 \right )+\frac{47b}{2} \right ]$


selected by
Answer:

Related questions

22 votes
5 answers
1
4.6k views
The value of $\lim_{x \rightarrow \infty} (1+x^2)^{e^{-x}}$ is $0$ $\frac{1}{2}$ $1$ $\infty$
asked Feb 14, 2015 in Calculus jothee 4.6k views
16 votes
2 answers
2
2.9k views
Compute the value of: $\large \int_{\frac{1}{\pi}}^{\frac{2}{\pi}}\frac{\cos(1/x)}{x^{2}}dx$
asked Feb 13, 2015 in Calculus makhdoom ghaya 2.9k views
22 votes
4 answers
3
2.6k views
The value of the integral given below is $\int \limits_0^{\pi} \: x^2 \: \cos x\:dx$ $-2\pi$ $\pi$ $-\pi$ $2\pi$
asked Sep 28, 2014 in Calculus jothee 2.6k views
22 votes
3 answers
4
2.4k views
Let $S = \sum_{i=3}^{100} i \log_{2} i$, and $T = \int_{2}^{100} x \log_{2}x dx$. Which of the following statements is true? $S > T$ $S = T$ $S < T$ and $2S > T$ $2S ≤ T$
asked Sep 14, 2014 in Calculus Kathleen 2.4k views
...