recategorized by
382 views
1 votes
1 votes

Let $f’(x)=4x^3-3x^2+2x+k,$  $f(0)=1$ and $f(1)=4.$ Then $f(x)$ is equal to

  1. $4x^4-3x^3+2x^2+x+1$
  2. $x^4-x^3+x^2+2x+1$
  3. $x^4-x^3+x^2+2(x+1)$
  4. none of these
recategorized by

1 Answer

2 votes
2 votes

$\underline{\textbf{Answer: B}}$

$\underline{\textbf{Explanation:}}$

Given:

$\mathrm {f'(x) = 4x^3 -3x^2 + 2x + k,\; f(0) = 1 \;\text{and}\; f(1) = 4}$

Now, we can integrate the $\mathrm {f'(x)}$ to get the $\mathrm {f(x)}$:

$\text{Let} \;\mathrm{I=f(x) = \int(4x^3-3x^2+2x+k)}$

$\Rightarrow \mathrm{f(x)=\frac{4x^4}{4} -\frac{3x^3}{3}+\frac{2x^2}{2}+kx + C, \;where\;c\;is\;a\;constant}$

$\Rightarrow \mathrm{f(x) =x^4 -x^3+x^2+kx + C}\tag{1}$

Now,

$\mathrm f(0) = 0\;\;\;\text{[Given]}$ 

$\therefore \mathrm {f(0)} = 0-0+0+\mathrm k\times 0 + \mathrm C = 1 $

This is possible only when $\mathrm C = 1$

$\therefore \bf{C = 1}$

Now,

$\mathrm{f(1) = 1-1+1+k.1+C = 4 \\ \Rightarrow 1 + k + 1 = 4\\ \Rightarrow \bf{k = 2}}$

Now, substitute $\mathrm C = 1,\;\text{and}\; \mathrm k = 2$, we get:

$\mathrm {x^4-x^3+x^2+2x + 1}$

$\therefore \mathbf B$ is the correct option.

edited by

Related questions

2 votes
2 votes
1 answer
1
gatecse asked Sep 18, 2019
654 views
Let $f(x)=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{3}...+\dfrac{x^{2018}}{2018}.$ Then $f’(1)$ is equal to $0$$2017$$2018$$2019$
0 votes
0 votes
1 answer
2
gatecse asked Sep 18, 2019
407 views
Let $[x]$ denote the largest integer less than or equal to $x.$ The number of points in the open interval $(1,3)$ in which the function $f(x)=a^{[x^2]},a\gt1$ is not diff...
0 votes
0 votes
0 answers
3
gatecse asked Sep 18, 2019
350 views
Let $f(x)=(x-1)(x-2)(x-3)g(x); \: x\in \mathbb{R}$ where $g$ is twice differentiable function. Thenthere exists $y\in(1,3)$ such that $f’’(y)=0.$there exists $y\in(1,...
1 votes
1 votes
0 answers
4
gatecse asked Sep 18, 2019
407 views
The sum of $99^{th}$ power of all the roots of $x^7-1=0$ is equal to$1$$2$$-1$$0$