# ISI2015-MMA-77

1 vote
94 views

Let $R$ be the triangle in the $xy$ – plane bounded by the $x$-axis, the line $y=x$, and the line $x=1$. The value of the double integral $$\int \int_R \frac{\sin x}{x}\: dxdy$$ is

1. $1-\cos 1$
2. $\cos 1$
3. $\frac{\pi}{2}$
4. $\pi$
in Calculus
edited
1

## Related questions

0 votes
1 answer
1
179 views
The limit $\:\:\:\underset{n \to \infty}{\lim} \Sigma_{k=1}^n \begin{vmatrix} e^{\frac{2 \pi i k }{n}} – e^{\frac{2 \pi i (k-1) }{n}} \end{vmatrix}\:\:\:$ is $2$ $2e$ $2 \pi$ $2i$
1 vote
1 answer
2
139 views
The limit $\underset{n \to \infty}{\lim} \left( 1- \frac{1}{n^2} \right) ^n$ equals $e^{-1}$ $e^{-1/2}$ $e^{-2}$ $1$
0 votes
1 answer
3
153 views
Let $a_n= \bigg( 1 – \frac{1}{\sqrt{2}} \bigg) \cdots \bigg( 1- \frac{1}{\sqrt{n+1}} \bigg), \: \: n \geq1$. Then $\underset{n \to \infty}{\lim} a_n$ equals $1$ does not exist equals $\frac{1}{\sqrt{\pi}}$ equals $0$
1 vote
1 answer
4
164 views
The limit $\displaystyle{}\underset{x \to \infty}{\lim} \left( \frac{3x-1}{3x+1} \right) ^{4x}$ equals $1$ $0$ $e^{-8/3}$ $e^{4/9}$