retagged by
169 views
5 votes
5 votes
$\displaystyle\lim _{x \rightarrow \infty}(x+\sin x)^{\dfrac{1}{x}}$
retagged by

2 Answers

2 votes
2 votes
$\begin{align*} {\lim_{x\rightarrow \infty}(x+sinx)^1/x} &= \lim_{x \rightarrow \infty}e^{ln(x+sinx)^{1/x}} \\ &= \lim_{x \rightarrow \infty}e^{\frac{ln(x+sinx)}{x}} \end{align*}$

$e^{x}$ is continous for all $x$

We can take limit inside

$e^{\lim_{x \rightarrow \infty} \frac{ln(x+sinx)}{x}}$

Consider only $\lim_{x \rightarrow \infty} \frac{ln(x+sinx)}{x}$

This is in $\frac{\infty}{\infty}$ form

Apply L’Hopital’s Rule

$\lim_{x \rightarrow \infty} \frac{ln(x+sinx)}{x} = 0 $

Finally

$\lim_{x\rightarrow \infty}$ $(x+sinx)^{1/x} = e^{0}$ =$1$
0 votes
0 votes
$\lim_{x\to\infty}(x+sinx)^{\frac{1}{x}}$, this is in form of $\infty^{0}$, so we have to do algebraic manipulations to get into either $\frac{\infty}{\infty}$ or $\frac{0}{0}$

Let $ y = \lim_{x\to\infty}(x+sinx)^{\frac{1}{x}}$

$\ln(y) = \lim_{x\to\infty}\frac{1}{x}\ln(x + sinx) = \dfrac{\ln(x+sinx)}{x}$

Now let’s evaluate  $\ln(y)$, so that if we get any finite value we take it as the power of $e$.

$\lim_{x\to\infty}\dfrac{ln(x+sinx)}{x}$  (this is in form of $\frac{\infty}{\infty}$, so apply L’Hopital Rule.)

-= $\lim_{x\to\infty}\dfrac{1}{x+sinx}(1+cosx)$

 =$\lim_{x\to\infty}\dfrac{1+cosx}{x+sinx}$

 

 = $\lim_{x\to\infty}\dfrac{1+cosx}{x(1+\frac{sinx}{x})}$

 

 =$\lim_{x\to\infty}\dfrac{1+cosx}{x}.\dfrac{1}{(1+\frac{sinx}{x})}$

 

  =$\lim_{x\to\infty}\left(\dfrac{1}{x}+\dfrac{cosx}{x}\right)\left(\dfrac{1}{1+\frac{sinx}{x}}\right)$

 

To evaluate $\dfrac{sinx}{x}, \dfrac{cosx}{x}$, we can use the squeeze theorem which says if the function $g(x)$ is in between $f(x), h(x)$ and limit values of $f(x),h(x)$ are equal then limit value of $g(x)$ also be the same.

here,

 

$-1 \leq sinx \leq 1 $ (this is true for every x)    ,    $-1 \leq cosx \leq 1 $ (this is true for every x)

 

$\dfrac{-1}{x} \leq \dfrac{sinx}{x} \leq \dfrac{1}{x}$                                                 $\dfrac{-1}{x} \leq \dfrac{cos}{x} \leq \dfrac{1}{x}$

 

we all know that, $\lim_{x\to\infty}\dfrac{1}{x}=0 $ and $\lim_{x\to\infty}\dfrac{-1}{x}=0 $, so by squeeze theorem $\lim_{x\to\infty}\dfrac{sinx}{x}=0 $ and $\lim_{x\to\infty}\dfrac{cosx}{x}=0 $

 

now substitute these values in the above expression,

 

=$\lim_{x\to\infty}\left(\dfrac{1}{x}+\dfrac{cosx}{x}\right)\left(\dfrac{1}{1+\frac{sinx}{x}}\right)$ = $\lim_{x\to\infty}\left(0+0\right)\left(\dfrac{1}{1+0}\right)$  = $0 (1)$ = 0

Don’t forget that this is the value of $\ln(y)$, to the get value of y take $e$ on both sides, so the final answer will be $e^0$ = 1.
Answer:

Related questions

189
views
2 answers
6 votes
GO Classes asked May 24, 2023
189 views
Let $M = \displaystyle\lim _{x \rightarrow 0^{+}}\left(e^x+3 x\right)^{1 / x}$.Find the value of $log_eM.$
197
views
1 answers
9 votes
GO Classes asked May 24, 2023
197 views
Below is a portion of the graph of an even function $f(x)$, which has domain $(-\infty, \infty)$ even though the graph below only shows the function on the interval $[0,5]$. ... $\lim _{h \rightarrow 0} \frac{f(1.5+h)-f(1.5)}{h}$
145
views
2 answers
4 votes
GO Classes asked May 24, 2023
145 views
Consider the piecewise function ... $C$ is a constant.Find $\displaystyle\lim _{x \rightarrow \infty} q(x)$
171
views
2 answers
8 votes
GO Classes asked May 24, 2023
171 views
Is there a number $b$ such that $\displaystyle\lim _{x \rightarrow-2} \frac{b x^2+15 x+15+b}{x^2+x-2}$ exists? If so, find the value of $b$ and the value of the limit.$-1$-2$1$There is no such $b$ for that above limit exist