edited by
105 views
1 votes
1 votes

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 6\end{array}\right], T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ , and $T\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{c}7 \\ 20\end{array}\right]$. 
Which of the following is the standard matrix $A$ of $T$?

  1. $\left(\begin{array}{lll}1 & -1 & 2 \\ 2 & -2 & 6\end{array}\right)$
  2. $\left(\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right)$
  3. $\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 6\end{array}\right)$
  4. $\left(\begin{array}{lll}2 & 1 & 3 \\ 6 & 3 & 9\end{array}\right)$
edited by

1 Answer

1 votes
1 votes
T(x) = Ax where x is the input for the transformation

In the question above, x and T(x) are given, we have to find A

$ T(x) = \begin{bmatrix}
2 & 6 \\
1 & 2 \\
7 & 20
\end{bmatrix}$

$ x = \begin{bmatrix}
0 & 1 & 2 \\
0 & 0 & 1 \\
1 & 0 & 3
\end{bmatrix}$

Since |x| = 1, therefore x is invertible

$T(x) = Ax$
$A = T(x).x^{-1}$

Solving this will get the A = Option A
Answer:

Related questions

143
views
1 answers
4 votes
GO Classes asked Apr 11
143 views
Let $T_{1}, T_{2}: R^{5} \rightarrow R^{3}$ be linear transformations s.t $\operatorname{rank}\left(T_{1}\right)=3$ and nullity $\left(T_{2}\right)=3$ ... s.t $T_{3}\left(T_{1}\right)=T_{2}$. Then find rank of $T_{3}$
122
views
1 answers
3 votes
GO Classes asked Apr 11
122 views
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ ... 2 \\ 1\end{array}\right]$\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right]$
134
views
2 answers
5 votes
GO Classes asked Apr 11
134 views
Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by$T(x, y)=(x-y, x-2 y), \text { for } x, y \in \mathbb{R}$Let $\mathcal{E}$ ... -1\end{array}\right)$\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$