We have AB+AB'+A'C+AC
We can rewrite above equation as
AB(C+C')+AB'(C+C')+A'(B+B')C+A(B+B')C ....(As (C+C')=0, (B+B')=0)
We get
ABC+ABC'+AB'C+AB'C'+A'BC+A'B'C+ABC+AB'C
Eliminating Common Terms and rewrite equation as.
ABC+ABC'+AB'C+AB'C'+A'BC+A'B'C
expression in terms of minterms is
m7+m6+m5+m4+m3+m1
KMap will be


C'B' 
C'B 
CB 
CB' 


00 
01 
11 
10 
A' 
0 
0 
1 
1 
0 
A 
1 
1

1

1

1

Thus we can write Reduced equation as
A+C