The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+13 votes
2k views
If $\int \limits_0^{2 \pi} |x \: \sin x| dx=k\pi$, then the value of $k$ is equal to ______.
asked in Calculus by Veteran (101k points) | 2k views

4 Answers

+27 votes
Best answer
There is a mod term in the given integral. So, first we have to remove that. We know that $x$ is always positive here and $\sin x$ is positive from 0 to $\pi$. From $\pi$ to $2\pi$, $x$ is positive while $\sin x$ changes sign. So, we can write

$\int_{0}^{2\pi} \mid x \sin x \mid dx = \int_{0}^{\pi} x \sin x dx + \left(-\int_{\pi}^{2\pi} x \sin x dx \right)$

$\qquad\qquad\qquad\quad\;= \int_{0}^{\pi} x \sin x dx -\int_{\pi}^{2\pi} x \sin x dx.$

$\int_{0}^{\pi}{udv} = uv - \int_{0}^{\pi}{vdu}$

$ \text{Here }u = x, du = dx, dv = \sin x dx, \text{ so } v = -\cos x$

$ \therefore \int_{0}^{\pi} x \sin x dx = \left [ -x\cos x\right]_0^{\pi} + \int_{0}^{\pi} \cos x dx$

$= \pi + \left[\sin x\right]_0^{\pi}\\ =\pi$

$\text{Now, } \int_{\pi}^{2\pi} x \sin x = \left [ -x\cos x\right]_{\pi}^{2\pi} + \int_{\pi}^{2\pi} \cos x dx$

$= -3\pi + \left[\sin x\right]_{\pi}^{2\pi}\\ = -3 \pi$

So, given integral = $\pi - \left(-3\pi\right) = 4\pi$

So, k = 4.
answered by Veteran (357k points)
edited by
+1

dv = sinxdx

0
First, we need to defined function $F(x)=|xsin(x)|$

$f(x)=\begin{cases} xsinx & \text{ if } 0 \leq x \leq \pi \\ -xsinx & \text{ if } \pi \leq x \leq 2\pi \end{cases}$

Now, first only find $\int xsinx\,dx=sinx-xcosx$

Now, our integral becomes

$\int_{0}^{2\pi}|xsinx|=\int_{0}^{\pi}xsinx\,-\int_{\pi}^{2\pi}xsinx$

$[sinx-xcosx]_{0}^{\pi}=\pi$

and

$[sinx-xcosx]_{\pi}^{2\pi}=-3\pi$

So, $\int_{0}^{2\pi}|xsinx|=\pi-(-3\pi)=4\pi$
+4 votes
No need to apply integration by parts,it will be time consuming,

Appy the formula $\int_{0}^{\pi }(\pi-x)sinxdx+\int_{\pi}^{2\pi}(2\pi+\pi -x)sinxdx$

now $I=\int_{0}^{\pi }(\pi-x)sinxdx$

$2I=\pi\int_{0}^{\pi}sinxdx=\pi$

similarly from 2nd part we can get $3\pi$ so total $4\pi$ is the answer
answered by Active (4.1k points)
0
please elaborate ur method
0
Awesome. Thank You.
+3 votes

ILATE PROPERTY IS USEFULL TO DO SUCH TYPE OF QUESTION

BUT ONE ANOTHER method is also important and fast when function is given odd function because both linear algebric and sin function is odd so their product is also odd function and period of sin is \pi and mod function converts them into positive so 

\int_{0}^{\pi }xsinx   gives value  \pi   and   \int_{\pi }^{2\pi } xsinxdx  gives value -3\pi but due to mod function it is gives\left | -3\pi \right |  that is equal to 3\pi    so final answer will be \pi +3\pi = 4\pi

answered by Active (4.9k points)
0 votes

Split in two intervals: 0 to π and π to 2kπ as sin x is negative in π to 2π.

Then use Integration By Parts with ILATE sequence.

Answer is:   4

answered by Active (1.1k points)
0
We can use the property of definite integral and apply the formula for limits and solve instead of byparts method too


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

39,439 questions
46,623 answers
139,370 comments
57,017 users