866 views

1 Answer

2 votes
2 votes

https://brilliant.org/wiki/generating-functions-solving-recurrence-relations/

example 1

$a_{0} = 2$

$a_{n+1} = 3a_{n} , n\geq 0$

Let $G(x)$ be the generating function for the given sequence $\begin{Bmatrix} a_{n} \end{Bmatrix}$

$G(x) = a_{0} + a_{1}x + a_{2}x^2 + a_{3}x^3 + ..................$              $(1)$

$3x*G(x) = 3a_{0}x +3 a_{1}x^2 + 3a_{2}x^3 + 3a_{3}x^4 + ..................$           $(2)$

$1 - 2$

$(1-3x)*G(x) = a_{0} + (a_{1}-3a_{0})x +(a_{2} - 3 a_{1})x^2 + ..................$

since $a_{0} = 2$ and $a_{n+1} = 3a_{n}$ , we have

$(1-3x)*G(x) = a_{0} + (3a_{0}-3a_{0})x +(3a_{1} - 3 a_{1})x^2 + ..................$

$(1-3x)*G(x) = 2$

$G(x) = 2/(1-3x)$

          $= 2[1 + (3x) + (3x)^2 + (3x)^3 + .................]$

          $=2 + 6x + 18x^2 + .................$

example 2

If a+b+c+d=20, how many unique, non-negative integer solutions exist for (a,b,c,d)?

The variable $a$ contributes $[1 + x + x^2 + x^3 + .....................]$ , same for $b , c$ and $d$

So, the generating function G(x) =  $[1 + x + x^2 + x^3 + .....................]*[1 + x + x^2 + x^3 + .....................]*[1 + x + x^2 + x^3 + .....................]*[1 + x + x^2 + x^3 + .....................]$

We need to find the coefficient of $x^{20}$ to get the result  

$G(x) = (1/1-x)*(1/1-x)*(1/1-x)*(1/1-x)$

$G(x) = 1/(1-x)^4$

$G(x) = (1-x)^{-4}$

coefficient of $x^{20}$ is $\binom{4+20-1}{20}$ which is equal to $1771$

a. https://brilliant.org/wiki/negative-binomial-theorem/

b. http://mathworld.wolfram.com/NegativeBinomialSeries.html

edited by

Related questions

0 votes
0 votes
1 answer
1
0 votes
0 votes
1 answer
2
0 votes
0 votes
0 answers
3
1 votes
1 votes
0 answers
4
shraddha priya asked Dec 12, 2018
604 views
The number of ways can 10 balls be chosen from an urn containing 10 identical green balls, 5 identical yellow balls and 3 identical blue balls are __________ .