# ISI2015-MMA-81

80 views

If $f$ is continuous in $[0,1]$ then $$\displaystyle \lim_ {n \to \infty} \sum_{j=0}^{[n/2]} \frac{1}{n} f \left(\frac{j}{n} \right)$$ (where $[y]$ is the largest integer less than or equal to $y$)

1. does not exist
2. exists and is equal to $\frac{1}{2} \int_0^1 f(x) dx$
3. exists and is equal to $\int_0^1 f(x) dx$
4. exists and is equal to $\int_0^{1/2} f(x) dx$
in Calculus
recategorized

## Related questions

1
124 views
The value of $\displaystyle \lim_{n \to \infty} \left[ (n+1) \int_0^1 x^n \ln(1+x) dx \right]$ is $0$ $\ln 2$ $\ln 3$ $\infty$
Consider the function $f(x) = \begin{cases} \int_0^x \{5+ \mid 1-y \mid \} dy & \text{ if } x>2 \\ 5x+2 & \text{ if } x \leq 2 \end{cases}$ Then $f$ is not continuous at $x=2$ $f$ is continuous and differentiable everywhere $f$ is continuous everywhere but not differentiable at $x=1$ $f$ is continuous everywhere but not differentiable at $x=2$
Given that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, the value of $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+xy+y^2)} dxdy$ is $\sqrt{\pi/3}$ $\pi/\sqrt{3}$ $\sqrt{2 \pi/3}$ $2 \pi / \sqrt{3}$
Let $0 < \alpha < \beta < 1$. Then $\Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$ is equal to $\log_e \frac{\beta}{\alpha}$ $\log_e \frac{1+ \beta}{1 + \alpha}$ $\log_e \frac{1+\alpha }{1+ \beta}$ $\infty$