# Recent questions tagged summation 1
How many pairs $(x,y)$ such that $x+y <= k$, where x y and k are integers and $x,y>=0, k > 0$. Solve by summation rules. Solve by combinatorial argument.
1 vote
2
The sum of the series $\dfrac{1}{1.2} + \dfrac{1}{2.3}+ \cdots + \dfrac{1}{n(n+1)} + \cdots$ is $1$ $1/2$ $0$ non-existent
1 vote
3
The following sum of $n+1$ terms $2 + 3 \times \begin{pmatrix} n \\ 1 \end{pmatrix} + 5 \times \begin{pmatrix} n \\ 2 \end{pmatrix} + 9 \times \begin{pmatrix} n \\ 3 \end{pmatrix} + 17 \times \begin{pmatrix} n \\ 4 \end{pmatrix} + \cdots$ up to $n+1$ terms is equal to $3^{n+1}+2^{n+1}$ $3^n \times 2^n$ $3^n + 2^n$ $2 \times 3^n$
1 vote
4
The sum $\dfrac{n}{n^2}+\dfrac{n}{n^2+1^2}+\dfrac{n}{n^2+2^2}+ \cdots + \dfrac{n}{n^2+(n-1)^2} + \cdots \cdots$ is $\frac{\pi}{4}$ $\frac{\pi}{8}$ $\frac{\pi}{6}$ $2 \pi$
1 vote
5
The sum $\sum_{k=1}^n (-1)^k \:\: {}^nC_k \sum_{j=0}^k (-1)^j \: \: {}^kC_j$ is equal to $-1$ $0$ $1$ $2^n$
1 vote
6
Let $X=\frac{1}{1001} + \frac{1}{1002} + \frac{1}{1003} + \cdots + \frac{1}{3001}$. Then, $X \lt1$ $X\gt3/2$ $1\lt X\lt 3/2$ none of the above holds
7
The series $\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$ converges to $-1$ $1$ $0$ does not converge
1 vote
8
If $0 <x<1$, then the sum of the infinite series $\frac{1}{2}x^2+\frac{2}{3}x^3+\frac{3}{4}x^4+ \cdots$ is $\log \frac{1+x}{1-x}$ $\frac{x}{1-x} + \log(1+x)$ $\frac{1}{1-x} + \log(1-x)$ $\frac{x}{1-x} + \log(1-x)$
9
Let $0 < \alpha < \beta < 1$. Then $\Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$ is equal to $\log_e \frac{\beta}{\alpha}$ $\log_e \frac{1+ \beta}{1 + \alpha}$ $\log_e \frac{1+\alpha }{1+ \beta}$ $\infty$
1 vote
10
For positive real numbers $a_1, a_2, \cdots, a_{100}$, let $p=\sum_{i=1}^{100} a_i \text{ and } q=\sum_{1 \leq i < j \leq 100} a_ia_j.$ Then $q=\frac{p^2}{2}$ $q^2 \geq \frac{p^2}{2}$ $q< \frac{p^2}{2}$ none of the above
11
Let $S=\{6, 10, 7, 13, 5, 12, 8, 11, 9\}$ and $a=\underset{x \in S}{\Sigma} (x-9)^2$ & $b = \underset{x \in S}{\Sigma} (x-10)^2$. Then $a <b$ $a>b$ $a=b$ None of these
12
The smallest integer $n$ for which $1+2+2^2+2^3+2^4+ \cdots +2^n$ exceeds $9999$, given that $\log_{10} 2=0.30103$, is $12$ $13$ $14$ None of these
1 vote
13
Let $S=\{6,10,7,13,5,12,8,11,9\},$ and $a=\sum_{x\in S}(x-9)^{2}\:\&\: b=\sum_{x\in S}(x-10)^{2}.$ Then $a<b$ $a>b$ $a=b$ None of these
14
The smallest integer $n$ for which $1+2+2^{2}+2^{3}+2^{4}+\cdots+2^{n}$ exceeds $9999$, given that $\log_{10}2=0.30103$, is $12$ $13$ $14$ None of these
15
The value of $\log_{2}e-\log_{4}e+\log_{8}e-\log_{16}e+\log_{32}e-\cdots\:\:$ is $-1$ $0$ $1$ None of these
1 vote
16
The value of $\dfrac{1}{\log_2 n}+ \dfrac{1}{\log_3 n}+\dfrac{1}{\log_4 n}+ \dots + \dfrac{1}{\log_{2017} n}\:\:($ where $n=2017!)$ is $1$ $2$ $2017$ none of these
17
The value of $\dfrac{x}{1-x^2} + \dfrac{x^2}{1-x^4} + \dfrac{x^4}{1-x^8} + \dfrac{x^8}{1-x^{16}}$ is $\frac{1}{1-x^{16}}$ $\frac{1}{1-x^{12}}$ $\frac{1}{1-x} – \frac{1}{1-x^{16}}$ $\frac{1}{1-x} – \frac{1}{1-x^{12}}$
18
$\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$ is $2$ $1$ $\infty$ not a convergent series
19
$\sum_{j=2}^{8}(-3)^j$
20
Let $A=\begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$, and $B=A+A^2+A^3+ \dots +A^{50}$. Then $B^2 =1$ $B^2 =0$ $B^2 =A$ $B^2 =B$
21
The infinite series $\Sigma_{n=1}^{\infty} \frac{a^n \log n}{n^2}$ converges if and only if $a \in [-1, 1)$ $a \in (-1, 1]$ $a \in [-1, 1]$ $a \in (-\infty, \infty)$
1 vote
22
Find the infinite sum of the series $1 + \frac{4}{7} + \frac{9}{7^2} + \frac{16}{7^3} + \frac{25}{7^4} + .............\Join$
23
How does the below bounds to logn? Please explain the steps 1 and 2. I came to know that they are using the idea of splitting the summations and bounding them. How the first and second step came?
1 vote
24
value of 1/3 + 1/15 + 1/35 +............................+1/9999 a)100/101 b)50/101 c)100/51 d)50/51
25
Series summation of $S_n$ in closed form? \begin{align*} &S_n = \frac{1}{1.2.3.4} + \frac{1}{2.3.4.5} + \frac{1}{3.4.5.6} + \dots + \frac{1}{n.(n+1).(n+2).(n+3)} \end{align*}
26
Prove the identity: \begin{align*} &\sum_{i=0}^{n}\sum_{j=0}^{i} a_ia_j = \frac{1}{2}\left ( \left ( \sum_{i=0}^{n}a_i \right )^2 + \left ( \sum_{i=0}^{n}a_i^2 \right )\right ) \end{align*}
#include <stdio.h> #define N 3 int main() { int array[N] = {1,2,3}; int i,j; for ( i=1; i<(1<<N); i++) { for( j=0; j<N; j++) { if((1<<j)&i) { printf("%d", array[j]); } } printf("\n"); } return 0; } A. How many times the if successfully executes in ... how many time when $N = n \;\; , n \; \text{ is a positive integer }$ ? B. What is the output? C. What will be the complexity when $N$ is large.