The Gateway to Computer Science Excellence
+1 vote

Let $f: \bigg( – \dfrac{\pi}{2}, \dfrac{\pi}{2} \bigg) \to \mathbb{R}$ be a continuous function, $f(x) \to +\infty$ as $x \to \dfrac{\pi^-}{2}$ and $f(x) \to – \infty$ as $x \to -\dfrac{\pi^+}{2}$. Which one of the following functions satisfies the above properties of $f(x)$?

  1. $\cos x$
  2. $\tan x$
  3. $\tan^{-1} x$
  4. $\sin x$
in Calculus by Veteran (431k points)
recategorized by | 27 views

1 Answer

0 votes

Here, $\cos (-\frac{\pi}{2})=\cos (\frac{\pi}{2})=0$ and $\sin (-\frac{\pi}{2})=-1,~ \sin (\frac{\pi}{2})=1$

$\displaystyle \lim_{x \to \frac{\pi^-}{2}} \tan x = \lim_{x \to \frac{\pi^-}{2}} \frac{\sin x}{\cos x}=\frac{+1}{0^+}\to +\infty$


$\displaystyle \lim_{x \to -\frac{\pi^+}{2}} \tan x = \lim_{x \to -\frac{\pi^+}{2}} \frac{\sin x}{\cos x}=\frac{-1}{0^+}\to -\infty$

$$\therefore f(x)=\tan x$$

So the correct answer is B.

by Active (3.5k points)
edited by

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,291 answers
104,888 users